نوع مقاله : مقاله پژوهشی

[1] S. Yang, K.F. Leong, Z. Du, and C.K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factorsˮ, Tissue Eng., vol. 7, pp. 679689, 2001. [2] Y. Ikada, Tissue Engineering Fundamentals and Applications, Netherland: Elsevier/Academic, 2008, pp. 173-188. [3] F. Mokhtari, M. Salehi, F. Zamani, F. Hajiani, F. Zeighami, and M. Latifi, “Advances in electrospinning: the production and application of nanofibere and nanofibrous structuresˮ, Text. Prog., vol. 48, no. 3, pp. 119-219, 2016. [4] E. Andronescu and A.M. Grumezescu, Nanostructures for Drug Delivery, Amsterdam: Elsevier/Matthew Deans, 2017, pp. 239–270. [5] F. Zamani, M. Amani-Tehran, M. Latifi, and M.A. Shokrgozar, “The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation”, J. Mater. Sci. Mater. Med., vol. 24, pp. 1551-1560, 2013. [6] F. Jahanmard, M. Amani-Tehran, F. Zamani, M. Nematollahi, L. Ghasemi, and M.H. NasrEsfahani, “Effect of nanoporous fibers on growth and proliferation of cells on electrospun poly(ϵcaprolactone) scaffoldsˮ, Int. J. Polym. Mater. Polym. Biomater., vol. 63, pp. 57-64, 2013. [7] M.P. Prabhakaran, J. Venugopal, C.K. Chan, and S. Ramakrishna, “Surface modified electrospun nanofibrous scaffolds for nerve tissue engineeringˮ, Nanotechnology, vol. 19, no. 45, pp. 5102,  2008. [8] S. Miroshnichenko, V. Timofeeva, E. Permykova, S. Ershov, P. Kiryukhantsev-Korneev, E. Dvorakov, D.V. Shtansky et al., “Plasma-coated polycaprolactone nanofibers with covalently bonded platelet-rich plasma enhance adhesion and growth of human fibroblastsˮ, 
Nanomaterials, vol. 9, pp. 637-656, 2019. [9] H. Rauscher, M. Perucca, and G. Buyle, Plasma Technology For Hyperfunctional Surface, Weinheim: Weily-VCH, 2010, pp. 63-78. [10] R. Morent, N. De Geyter, T. Desmet, P. Dubruel, and C. Leys, “Plasma surface modification of biodegradable polymers: a reviewˮ, Plasma Proc. Polym., vol. 8, pp. 171-190, 2011. [11] G.H. Ryu, W.S. Yang, H.W. Roh, I.S. Lee, J.K. Kim, G.H. Lee, D.H. Lee et al., “Plasma surface modification of poly(D, L-lactic-co-glycolic acid) (65/35) film for tissue engineeringˮ, Surf. Coat. Technol., vol. 193, pp. 60-64, 2005. [12] A. Solouk, B.G. Cousins, H. Mirzadeh, and A.M. Seifalian, “Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: a review”, Biotechnol. Appl. Biochem.,vol. 58, pp. 311-327, 2011. [13] A. Solouk, B.G. Cousins, H. Mirzadeh, M. SolatiHashtjin, S. Najarian, and A.M. Seifalian, “Surface modification of POSS-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications”, Biotechnol. Appl. Biochem., vol. 58, pp. 147-161, 2011. [14] Z. Liu, L. Jia, Z. Yan, and L. Bai, “Plasma-treated electrospun nanofibers as a template for the electrostatic assembly of silver nanoparticles”, New J. Chem., vol. 42, no. 13, pp. 1-7 , 2018. [15] N. Hasirci, T. Endogan, E. Vardar, A. Kiziltay, and V. Hasirci, “Effect of oxygen plasma on surface properties and biocompatibility of PLGA films”, Surf. Interface Anal., vol. 42, pp. 486-491, 2010. [16] M. Khorasani, H. Mirzadeh, and S. Irani, “Plasma surface modification of poly(L-lactic acid) and poly(lactic-co-glycolic acid) films for improvement of nerve cells adhesion”, Radiat. Phys. Chem., vol. 77, pp. 280-287, 2008. [17] K.E. Park, K.Y. Lee, S.J. Lee, and W.H. Park, “Surface characteristics of plasma-treated PLGA nanofibers”, Macromol. Symp., pp. 103-108, 2007. [18] L. Safinia, K. Wilson, A. Mantalaris, and A. Bismarck, “Through-thickness plasma modification of biodegradable and nonbiodegradable porous polymer constructs”, J. Biomed. Mater. Res., vol. 87A, pp. 
 632-642, 2008. [19] H. Cao, T. Liu, and S. Chew, “The application of nanofibrous scaffolds in neural tissue engineering”, Adv. Drug Deliver. Rev., vol. 61, pp. 1055, 2009. [20] G. Kim, J. Park, and S. Park, “Surface-treated and multilayered poly(e-caprolactone) nanofiber webs exhibiting enhanced hydrophilicity, J. Polym. Sci: Polym. Phys., vol. 45B, pp. 2038-2045, 2007. [21] L. Huang, J.T. Arena, S.S. Manickam, X. Jiang, B.G. Willis, and J.R. McCutcheon, “Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification, J. Membrane Sci., vol. 460,  pp. 241249, 2014. [22] F. Zamani, M. Amani-Tehran, A. Zaminy, and M.A. Shokrgozar, “Conductive 3D Structure nanofibrous scaffolds for spinal cord regeneration”, Fiber. Polym., vol. 18, pp. 1874-1881, 2017. [23] F. Zamani, M. Latifi, M. Amani-Tehran, and M.A. Shokrgozar, “Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology”, Fiber. Polym., vol. 14, pp. 698-702, 2013. [24] S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, 
and Z. Ma, An Introduction to Electrospinning and Nanofibers, World scientific, Singapore, 2005, pp. 90155. [25] L. Safinia, N. Datan, M. Hohse, A. Mantalaris and A. Bismarck, “Towards a methodology for the effective surface modification of porous polymer scaffoldˮ, Biomaterials, vol. 26, pp. 7537-7547, 2005. [26] D.L. Pavia, G. Lampman, and G.S. Kriz, Introduction to Spectroscopy, 5rd ed, Cengage Learning, Washington, 2013, pp. 14-106. [27] F. Zamani, “Engineering of structural properties of PLGA nanofbrous scaffold for neural cell cultureˮ, Ph.D Dissertation, Dept. Text. Eng., Amirkabir University of Technology, Tehran, Iran, 2013. [28] GE. Adams, A. Breccia, EM. Fielden, and P. Wardman, Selective Activation of Drugs by Redox Processes, New York: Plenum, 1990, pp. 200-210.