نوع مقاله : مقاله پژوهشی

[1] A.F. Peixoto, A.C. Fernandes, C. Pereira, J. Pires, and C. Freire, “Physicochemical characterization of organosilylated halloysite clay nanotubes”, Micropor. Mesopor. Mater., vol. 219, pp. 145-154, 2016.
[2] Y.M. Chen, L. Yu, and X.W.D. Lou, “Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage”, Angew. Chem., Int. Ed., doi:10.1002/ ange.201600133.
[3] Y.M. Lvov, D.G. Shchukin, H. Mohwald, and R.R. Price, “Halloysite clay nanotubes for controlled release of protective agents”, ACS Nano, vol. 2, pp. 814-820, 2008.
[4] G. Cavallaro, “Innovative smart materials designed for environmental purposes”, ph.D dissertation, University of Palermo, Sicily, 2013.
[5] M.T. Dodd, D.A. Jakubovic, C.D. Putman, M.R. Sine, C.P. Thomas, and K.S. Wei, “Skin sanitizing compositions”, EP1152743A1, 2001.
[6] C.K. Choo, X.Y. Kong, T.L. Goh, G.C. Ngoh, B.A. Horri, and B. Salamatinia, “Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal”, Carbohyd. Polym., vol. 138, pp. 16-26, 2016.
[7] D. Papoulis, D. Panagiotaras, P. Tsigrou, K. Christoforidis, C. Petit, A. Apostolopoulou et al., “Halloysite and sepiolite-TiO2 nanocomposites: synthesis characterization and photocatalytic activity in three aquatic wastes”, Mat. Sci. Semicon. Proc., vol. 85, pp. 1-8, 2018.
[8] D. Papoulis, “Halloysite based nanocomposites and photocatalysis: a review”, Appl. Clay Sci., vol. 168, pp. 164-174, 2019.
[9] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, “Halloysite clay minerals-a review”, Clay Miner., vol. 40, pp. 383-426, 2005.
[10] C. Chao, J. Liu, J. Wang, Y. Zhang, B. Zhang, Y. Zhang et al., “Surface modification of halloysite nanotubes with dopamine for enzyme immobilization”, ACS Appl. Mater. Inter., vol. 5, pp. 10559-10564, 2013.
[11] F. Shahamati Fard, S. Akbari, E. Pajootan, and M. Arami, “Enhanced acidic dye adsorption onto the dendrimer-based modified halloysite nanotubes”, Desalin. Water Treat., vol. 57, no. 54, pp. 1-18, 2016.
[12] S. Rooj, A. Das, V. Thakur, R. Mahaling, A.K. Bhowmick, and G. Heinrich, “Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes”, Mater. Design, vol. 31, pp. 2151-2156, 2010.
[13] R. Kamble, M. Ghag, S. Gaikawad, and B.K. Panda, “Halloysite nanotubes and applications: a review”, J. Adv. Sci. Res., vol. 3, no. 2, pp. 25-29, 2012.
[14] S. Cataldo, G. Lazzara, M. Massaro, N. Muratore, A. Pettignano, and S. Riela, “Functionalized halloysite nanotubes for enhanced removal of lead (II) ions from aqueous solutions”, Appl. Clay Sci., vol. 156, pp. 8795, 2018.
[15] J. Zhang, D. Zhang, A. Zhang, Z. Jia, and D. Jia, “Dendritic polyamidoamine-grafted halloysite nanotubes for fabricating toughened epoxy composites”, Iran. Polym. J., vol. 22, pp. 501-510, 2013.
[16] B. Theng, M. Russell, G. Churchman, and R. Parfitt, “Surface properties of allophane, halloysite, and imogolite”, Clay. Clay Miner., vol. 30, pp. 143-149, 1982.
[17] C.L. Grady Jr, G.T. Daigger, N.G. Love, and C.D. Filipe, Biological Wastewater Treatment: CRC Press, 2011.
[18] E. Riser-Roberts, Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes: CRC Press, 1998.
[19] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry”, Talanta, vol. 76, pp. 965-977, 2008.
[20] B. Noroozi, G. Sorial, H. Bahrami, and M. Arami, “Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent-silkworm pupa”, 
J. Hazard. Mater., vol. 139, pp. 167-174, 2007.
[21] N.G. Veerabadran, R.R. Price, and Y.M. Lvov, “Clay nanotubes for encapsulation and sustained release of drugs”, Nano, vol. 2, pp. 115-120, 2007.
[22] S. Levis and P. Deasy, “Characterisation of halloysite for use as a microtubular drug delivery system”, Int. J. Pharm., vol. 243, pp. 125-134, 2002.
[23] L. Liu, Y. Wan, Y. Xie, R. Zhai, B. Zhang, and J. Liu, “The removal of dye from aqueous solution using alginate-halloysite nanotube beads”, Chem. Eng. J., vol. 187, pp. 210-216, 2012.
[24] M. Bhaumik, R.I. McCrindle, A. Maity, S. Agarwal, and V.K. Gupta, “Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from aqueous solutions”, J. Colloid Interface Sci., vol. 466, pp. 442-451, 2016. [25] T. Anirudhan and M. Ramachandran, “Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm”, Process Saf. Environ., vol. 95, pp. 215-225, 2015.
[26] J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang et al., “Adsorption of methylene blue by a highefficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis”, Chem. Eng. J., vol. 259, pp. 53-61, 2015.
[27] D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas, and N.K. Lazaridis, “Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons”, J. Mol. Liq., vol. 213, pp. 381-389, 2016.
[28] F. Gomri, M. Boutahala, H. Zaghouane-Boudiaf, S.A. Korili, and A. Gil, “Removal of acid blue 80 from aqueous solutions by adsorption on chemical modified bentonites”, Desalin. Water Treat., pp. 1-10, 2016.
[29] T. Madrakian, A. Afkhami, and M. Ahmadi, “Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples”, Spectrochim. Acta A: Mol. Biomol. Spectrosc., vol. 99, pp. 102-109, 2012.
[30] M. Viseras, C. Aguzzi, P. Cerezo, C. Viseras, and C. Valenzuela, “Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite”, Micropor. Mesopor. Mat., vol. 108, pp. 112-116, 2008.
[31] R. Liu, B. Zhang, D. Mei, H. Zhang, and J. Liu, “Adsorption of methyl violet from aqueous solution by halloysite nanotubes”, Desalination, vol. 268, pp. 111-116, 2011.