نوع مقاله : مقاله پژوهشی

[1] U. Gulzar, “Next-generation textiles: from embedded supercapacitors to lithium ion batteries”, J. Mater. Chem. A, vol. 4, pp. 16771-16800, 2016. [2] K. Jost, G. Dion, and Y. Gogotsi, “Textile energy storage in perspective”, J. Mater. Chem., vol. 2, pp. 10776-10787, 2014. [3] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu et al., “Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators”, Adv. Mater., vol. 28, no. 1, pp. 
 98-105, 2016. [4] K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Diona, and Y. Gogotsi, “Carbon coated textiles for flexible energy storage”, Energy Environ. Sci., vol. 4, pp. 5060-5067, 2011. [5] D.P. Dubal, N.R. Chodankar, D.H. Kim, and P. GomezRomero, “Towards flexible solid-state supercapacitors for smart and wearable electronics”, Chem. Soc. Rev., vol. 47, pp. 2065-2129, 2018. [6] I.A. Sahito, K.C. Sun, A.A. Arbab, M.B. Qadir, and S.H. Jeong, “Graphene coated cotton fabric as textile structured counter electrode for DSSC”, Electrochim. Acta, vol. 173, pp. 164-171, 2015. [7] A. Berendjchi, R. Khajavi, A.A. Yousefi, and M.E. Yazdanshenas, “Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate”, Appl. Surf. Sci., vol. 363, pp. 264-272, 2016. [8] M. Montazer and T. Harifi, Nanofinishing of Textile Materials, Woodhead Publishing, 2018, pp. 65-82. [9] H.W. Cui, K. Suganuma, and H. Uchida, “Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method”, Nano Res., vol. 8, no. 5, pp. 1604–1614, 2015. [10] B. Yue, C. Wang, X. Ding, and G.G. Wallace, “Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications”, Electrochim. Acta, vol. 68, pp. 18-24, 2012. [11] C. Sun, X. Li, Z. Cai, and F. Ge, “Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor”, Electrochim. Acta, vol. 296, pp. 
 617-626, 2019. [12] J. Molina, A. Zille, J. Fernández, A.P. Souto, J. Bonastre, and F. Casesa, “Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide”, Synthetic Met., vol. 204, pp. 110-121, 
 2015.
[13] S. Li, C. Zhao, K. Shu, C. Wang, Z.P. Guo, G.G. Wallace, and H.K. Liu, “Mechanically strong high performance layered polypyrrole nano fiber/graphene film for flexible solid state supercapacitor”, Carbon, vol. 79, pp. 554-562, 2014. [14] S. Sahoo, D. Saptarshi, H. Goutam, B. Pallab, and K.D. Chapal, “Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor”, Polymer, vol. 54, pp. 1033-1042, 2013. [15] J. Liu, J. An, Y. Ma, M. Li, and R. Ma “Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode”, J. Electrochem. Soc., vol. 159, pp. 828-833, 2012. [16] J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao et al., “Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application”, Org. Electron., vol. 24, pp. 153-159, 2015. [17] M. Barakzehi, M. Montazer, F. Sharif, T. Norby, and A. Chatzitakis, “A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite”, Electrochim. Acta, vol. 305, pp. 187-196, 2019. [18] Y. Liang, W. Weng, J. Yang, L. Liu, Y. Zhang, L. Yang, X. Luo et al., “Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility”, RSC Adv., vol. 7, pp. 48934-48941, 2017. [19] T. Harifi and M. Montazer, “In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-Fenton catalytic properties”, J. Mater. Chem. B, vol. 2, pp. 272-282, 2014. [20] R. Liu, Y. Liu, Q. Kang, A. Casimir, H. Zhang, N. Li, Z. Huang et al., “Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries”, RSC Adv., vol. 6, pp. 
 9402-9410, 2016. [21] F. Bertini and V.V. Zuev, “Thermal behavior and degradation of a liquid crystalline alkylene-aromatic polyester:poly(decamethylene-fumaroyl-bis-4oxybenzoate)”, Polym. Degrad. Stabil., vol. 92, pp. 1669–1676, 2007. [22] A. Batool, F. Kanwal, M. Imran, T Jamil, and S.A. Siddiqi, “Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties”, Synthetic Met., vol. 161, pp. 2753–2758, 2012. [23] Q. Zhou, X. Ye, Z. Wan, and C. Jia, “A threedimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode”, J. Power Sources, vol. 296, pp. 186-196, 2015.
[24] Y. Liang, W. Weng, J. Yang, L. Liu, Y. Zhang, L. Yang, X. Luo et al., “Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility”, RSC Adv., vol. 7, pp. 48934-48941, 2017. [25] Y.C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen, and K.-H. Chen, “Highly flexible supercapacitors with manganese oxide nanosheet/
carbon cloth electrode”, Electrochim. Acta, vol. 56, pp. 7124–7130, 2011. [26] Y.Y. Horng, Y.-K. Hsu, L.-C. Chen, Y.-C. Lu, C.-C. Chen, and K.-H. Chen, “Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance”, J. Power Sources, vol. 195, pp. 4418–4422, 2010.