نوع مقاله : مقاله پژوهشی

[1] D. Mohebbi-Kalhori, A. Behzadmehr, C.J. Doillon, and A. Hadjizadeh, “Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering”, J. Artif Organs, vol. 15, no. 3, pp. 250-265, 2012. [2] M.J. Moreno, A. Ajji, D. Mohebbi-Kalhori, M. Rukhlova, A. Hadjizadeh, and M.N. Bureau, “Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold”, J. Biomed. Mater. Res. B: Appl. Biomater., vol. 97, no. 2, pp. 201-214, 2011. [3] A. Hadjizadeh, H. Savoji, and A. Ajji, “A facile approach for the mass production of submicro/micro poly(lactic acid) fibrous mats and their cytotoxicity test towards neural stem cells”, Biomed. Res. Int., vol. 2016, Article ID 8921316, 12 pages, 2016.  [4] J. Blaker, S. Nazhat, and A. Boccaccini, “Development and characterization of silver-doped bioactive glasscoated sutures for tissue engineering and wound healing applications”, Biomaterials, vol. 25, no. 7-8, pp. 1319-1329, 2004. [5] Y.Z. Cai, G.R. Zhang, L.L. Wang, Y.Z. Jiang, H.W. Ouyang, and X.H. Zou, “Novel biodegradable threedimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering”, J. Biomed. Mater. Res. Part A, vol. 100, no. 5, pp. 1187-1194, 2012. [6] F. Haghighat and S.A.H. Ravandi, “Mechanical properties and in-vitro degradation of PLGA suture manufactured via electrospinning”, Fiber. Polym., 
 vol. 15, no. 1, pp. 71-77, 2014. [7] H.H. Xu, F.C. Eichmiller, and A.A. Giuseppetti, “Reinforcement of a self-setting calcium phosphate cement with different fibers”, J. Biomed. Mater. Res., vol. 52, no. 1, pp. 107-114, 2000. [8] A. Hadjizadeh and C.J. Doillon, “Directional migration of endothelial cells towards angiogenesis using polymer fibers in a 3D co-culture system”, J. Tissue Eng. Regen. Med., vol. 4, no. 7, pp. 524-531, 2010. [9] A. Hadjizadeh, C.J. Doillon, and P. Vermette, “Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment”, Biomacromolecules, vol. 8, no. 3, pp. 864-873, 2007. [10] N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, and G.H. Kazemzadeh, “Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers”, Biomed. Mater., vol. 13, no. 5, pp. 055014, 
 2018. [11] A. Hadjizadeh, “Acetaldehyde plasma polymer-coated PET fibers for endothelial cell patterning: chemical, topographical, and biological analysis”, J. Biomed. Mater. Res. B Appl. Biomater., vol. 94, no. 1, pp. 11-21, 
 2010. [12] S.  Agarwal, A. Greiner, and J.H. Wendorff, “Functional materials by electrospinning of polymers”, Prog. Polym. Sci., vol. 38, no. 6, pp. 963-991, 2013. [13] X. Wang, B. Ding, and B. Li, “Biomimetic electrospun nanofibrous structures for tissue engineering”, Mater. Today, vol. 16, no. 6, pp. 229-241, 2013. [14] A. Hadjizadeh, A. Ajji, M. Jolicoeur, B. Liberelle, and G. De Crescenzo, “Effects of electrospun nanostructure versus microstructure on human aortic endothelial cell behavior”, J. Biomed. Nanotechnol., vol. 9, no. 7, 
 pp. 1195-1209, 2013. [15] F. Zamani, M. Amani-Tehran, M. Latifi, and M.A. Shokrgozar, “The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation”, J. Mater. Sci. Mater. Med., vol. 24, no. 6, pp. 1551-1560, 2013. [16] X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications”, J. Controlled Release, vol. 185, pp. 12-21, 2014. [17] F. Zamani, F. Jahanmard, F. Ghasemkhah, S. AmjadIranagh, R. Bagherzadeh, M. Amani-Tehran et al., “Nanofibrous and Nanoparticle Materials as DrugDelivery Systems, in: Nanostructures for Drug Delivery, E. Andronescu and A. Grumezescu Eds., Elsevier, 2017, pp. 239–270. [18] S.P. Miguel, D.R. Figueira, D. Simões, M.P. Ribeiro, 
P. Coutinho, P. Ferreira et al., “Electrospun polymeric nanofibres as wound dressings: a review”, Colloid.  Surface. B: Biointerface., vol. 169, pp. 60-71, 2018. [19] S.H. Nemati and A. Hadjizadeh, “Gentamicin-eluting titanium dioxide nanotubes grown on the ultrafinegrained titanium”, AAPS Pharm. Sci. Technol., vol. 18, no. 6, pp. 2180-2187, 2017. [20] S. Moghassemi, A. Hadjizadeh, and K. Omidfar, “Formulation and characterization of bovine serum albumin-loaded niosome”, AAPS Pharm. Sci. Technol., vol. 18, no. 1, pp. 27-33, 2017. [21] K. Modaresifar, A. Hadjizadeh, and H. Niknejad, “Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery”, Artif. Cells Nanomed. Biotechnol., vol. 46, no. 8, pp. 1799-1808, 2018. [22] S. Moghassemi, A. Hadjizadeh, A. Hakamivala, and K. Omidfar, “Growth factor-loaded nano-niosomal gel formulation and characterization”, AAPS Pharm. Sci. Technol., vol. 18, no. 1, pp. 34-41, 2017. [23] W. Ji, Y. Sun, F. Yang, J.J. van den Beucken, M. Fan, Z. Chen et al., “Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications”, Pharm. Res., vol. 28, no. 6, pp. 1259-1272, 2011.  [24] R.A. Perez and H.-W. Kim, “Core–shell designed scaffolds for drug delivery and tissue engineering”, Acta Biomater., vol. 21, pp. 2-19, 2015.  [25] W. Cui, Y. Zhou, and J. Chang, “Electrospun nanofibrous materials for tissue engineering and drug delivery”, Sci. Technol. Adv. Mater., vol. 11, no. 1, 
 pp. 014108, 2010.  [26] M.V. Natu, H.C. de Sousa, and M. Gil, “Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers”, Int. J. Pharm., vol. 397, no. 1, pp. 50-58, 2010. [27] F. Song, X.-L. Wang, and Y.-Z. Wang, “Poly(Nisopropylacrylamide)/poly(ethylene oxide) blend nanofibrous scaffolds: thermo-responsive carrier for controlled drug release”, Colloid. Surface. B: Biointerface, vol. 88, no. 2, pp. 749-754, 2011. [28] Y. Su, Q. Su, W. Liu, M. Lim, J.R. Venugopal, X. Mo 
 et al., “Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering”, Acta Biomater., vol. 8, no. 2, pp. 763771, 2012. [29] H. Jiang, L. Wang, and K. Zhu, “Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents”, J. Control. Release, vol. 193, pp. 296-303, 2014. [30] M. Maleki, M. Latifi, M. Amani-Tehran, and 
 S. Mathur, “Electrospun core-shell nanofibers for drug encapsulation and sustained release”, Polym. Eng. Sci., vol. 53, no. 8, pp. 1770-1779, 2013. [31] A. Yarin, “Coaxial electrospinning and emulsion electrospinning of core-shell fibers”, Polym. Adv. Technol., vol. 22, no. 3, pp. 310-317, 2011. [32] A. Moghe and B. Gupta, “Co-axial electrospinning for nanofiber structures: preparation and applications”, Polym. Rev., vol. 48, no. 2, pp. 353-377, 2008. [33] M. Yousefzadeh and F. Ghasemkhah, “Design of Porous, Core-Shell, and Hollow Nanofibers”, in: Handbook of Nanofibers, A. Barhoum, M. Bechelany, and A. Makhlouf Eds.,  Springer, Cham, 2018, pp. 1-58. [34] X. Qin, “Coaxial electrospinning of nanofibers”, in: Electrsopun Nanofibers, M. Afshari Ed., Cambridge:Elsevier, 2017, pp. 41-71. [35] Z.M. Huang, C.L. He, A. Yang, Y. Zhang, X.J. Han, J. Yin et al., “Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning”, J. Biomed. Mater. Res. Part A, vol. 77, no. 1, pp. 169-179, 
 2006. [36] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues”, Mater. Today, vol. 9, no. 3, pp. 40-50, 2006. [37] A. Theron, E. Zussman, and A. Yarin, “Electrostatic field-assisted alignment of electrospun nanofibers”, Nanotechnology, vol. 12, no. 3, pp. 384, 2001. [38] P. Katta, M. Alessandro, R. Ramsier, and G. Chase, “Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector”, Nano Letters, vol. 4,  no. 11, pp. 2215-2218, 2004. [39] E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, and G.L. Bowlin, “Electrospinning collagen and elastin: preliminary vascular tissue engineering”, Front. Biosci., vol. 9, 
 no. 1422, pp. 1422-1432, 2004. [40] P.D. Dalton, D. Klee, and M. Möller, “Electrospinning with dual collection rings”, Polymer, vol. 46, no. 3, 
 pp. 611-614, 2005. [41] F. Ghasemkhah, M. Latifi, A. Hadjizadeh, and M.A. Shokrgozar, “Potential core-shell designed scaffolds with a gelatin-based shell in achieving controllable release rates of proteins for tissue engineering approaches”, J. Biomed. Mater. Res. Part A, 2019. online: https://doi.org/10.1002/jbm.a.36653 [42] S. Panzavolta, M. Gioffrè, M.L. Focarete, C. Gualandi, L. Foroni, and A. Bigi, “Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber 
morphology after exposure to water”, Acta Biomater., vol. 7, no. 4, pp. 1702-1709, 2011. [43] N. Reddy, R. Reddy, and Q. Jiang, “Crosslinking biopolymers for biomedical applications”, Trend. Biotechnol., vol. 33, no. 6, pp. 362-369, 2015. [44] S.A. Poursamar, A.N. Lehner, M. Azami, S. EbrahimiBarough, A. Samadikuchaksaraei, and A.P.M. Antunes, “The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold”, Mater. Sci. Eng. C, vol. 63, pp. 1-9, 2016. [45] S.-F. Chou, L.-J. Luo, J.-Y. Lai, and D.H.-K. Ma, “Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials”, Mater. Sci. Eng. C, vol. 71, pp. 1145-1155, 2017. [46] S. Gautam, A.K. Dinda, and N.C. Mishra, “Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method”, Mater. Sci. Eng. C, vol. 33, no. 3, pp. 1228-1235, 2013. [47] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, “Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering”, Biomaterials, vol. 29, no. 34, pp. 4532-4539, 217. [48] M.S. Kim, I. Jun, Y.M. Shin, W. Jang, S.I. Kim, and H. Shin, “The development of genipin-crosslinked poly(caprolactone)(PCL)/gelatin nanofibers for tissue engineering applications”, Macromol. Biosci., vol. 10, no. 1, 91-100, 2010. [49] Q. Li, X. Wang, X. Lou, H. Yuan, H. Tu, B. Li et al., “Genipin-crosslinked electrospun chitosan nanofibers: determination of crosslinking conditions and evaluation of cytocompatibility”, Carbohyd. Polym., vol. 130, pp. 166-174, 2015. [50] C. Del Gaudio, S. Baiguera, M. Boieri, B. Mazzanti, D. Ribatti, A. Bianco et al., “Induction of angiogenesis using VEGF releasing genipin-crosslinked electrospun gelatin mats”, Biomaterials, vol. 34, no. 31, pp. 77547765, 2013. [51] Y. Liu and C. Pellerin, “Highly oriented electrospun fibers of self-assembled inclusion complexes of poly(ethylene oxide) and urea”, Macromolecules, 
 vol. 39, no. 26, pp. 8886-8888, 2006. [52] C. Lim, E. Tan, and S. Ng, “Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers”, Appl. Phys. Lett., vol. 92, no. 14, pp. 141908, 2008. [53] N.T.B. Linh, Y.K. Min, H.Y. Song, and B.T. Lee, “Fabrication of polyvinyl alcohol/gelatin nanofibercomposites and evaluation of their material properties”, J. Biomed. Mater. Res. Part B: Appl. Biomat., vol. 95, no. 1, pp. 184-191, 2010. [54] D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, and 
 G. Fortunato, “Structure and morphology of electrospun polycaprolactone/gelatine nanofibers”, 
Eur. Polym. J., vol. 49, no. 8, pp. 2052-2061, 2013. [55] A. Baji, Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, “Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties”, Compos. Sci. Technol., vol. 70, no. 5, 
 pp. 703-718, 2010.