نوع مقاله : مقاله پژوهشی

[1] N. Arivithamani and V.R.G. Dev, “Cationization of cotton for industrial scale salt-free reactive dyeing of garments”, Clean. Technol. Envir., vol. 19, no. 9, pp. 2317-2326, 2017. [2] M. Mahbubul Bashar and M.A. Khan, “An overview on surface modification of cotton fiber for apparel use”, J. Polym. Environ., vol. 21, no. 1, pp. 181–190, 2013.  [3] W. Schnitzhofer, A. Kandelbauer, B. Klug-Santner, M. Onos, M. Calafell, and G.M. Guebitz, “Production of cellulase-free polygalacturonase preparation by sclerotium rolfsii for bioscouring of cotton”, J. Nat. Fibers, vol. 3, no. 2-3, pp.19-38, 2006. [4] V.G. Yachmenev, T. Calamari Jr, and A.H. Lambert, “The effects of ultrasound on the performance of industrial enzymes used in cotton bio-preparation/biofinishing applications”, J. Nat. Fibers, vol. 3, no. 2-3, pp. 99-112, 2006. [5] J. Jayapriya and C. Vigneswaran, “Process optimization for biosoftening of lignocellulosic fiber with white rot fungi and specific enzymatic systems”, J. Nat. Fibers,  vol. 7, no. 1, pp. 17-33, 2010. 
[6] D. Biswas, S.K. Chakrabarti, S. De, and R. Paral, “Ecofriendly degumming technology for ramie fiber”, J. Nat. Fibers, vol. 13, no. 2, pp. 227-237, 2016.  [7] D. Fakin, V. Golob, K.S. Kleinschenk, and A.M.L. Marechal, “Sorption properties of flax fibers depending on pretreatment processes and their environmental impact”, Text. Res. J., vol. 76, no. 6, pp. 448-454, 2006. [8] T. Harifi and M. Montazer, “Application of sonochemical technique for sustainable surface modification of polyester fibers resulting in durable nano-sonofinishing”, Ultrason. Sonochem., vol. 37, pp.158-168, 2017.  [9] M. Ghahremani-Honarvar and M. Latifi, “Overview of wearable electronics and smart textiles”, J. Text. I., vol. 108, no. 4, pp. 631-652, 2017. [10] V. Sivakumar and P.G. Rao, “Application of power ultrasound in leather processing: an eco-friendly approach”, J. Clean. Prod., vol. 9, no. 1, pp. 25–33, 2001. [11] S. Perincek, I. Bahtiyari, A. Korlu, and K. Duran, “New techniques in cotton finishing”, Text. Res. J., vol. 79, no. 2, pp. 121–128, 2009. [12] J.H. Bang and K.S. Suslick, “Applications of ultrasound to the synthesis of nanostructured materials”, Adv. Mater., vol. 22, pp. 1039-1059, 2010. [13] O.E. Szabó and E. Csiszár, “The effect of lowfrequency ultrasound on the activity and efficiency of a commercial cellulase enzyme”, Carbohyd. Polym., vol. 98, no. 2, pp. 1483-1489, 2013. [14] P.B. Subhedar and P.R. Gogate, “Enhancing the activity of cellulase enzyme using ultrasonic irradiations”, J. Mol. Catal. B-Enzym., vol. 101, pp. 108-114, 2014. [15] Y.G. Adewuyi and V.G. Deshmane, “Intensification of enzymatic hydrolysis of cellulose using highfrequency ultrasound: an investigation of the effects of process parameters on glucose yield”, Energ. Fuel., vol. 29, no. 8, pp 4998–5006, 2015. [16] L.M.G. Dalagnol, V.C.C. Silveira, H.B.D. Silva, V. Manfroi, and R.C. Rodrigues, “Improvement of pectinase, xylanase and cellulase activities by ultrasound: effects on enzymes and substrates, kinetics and thermodynamic parameters”, Process Biochem., vol. 61, pp. 80–87, 2017. [17] M.R. Ladole, J.S. Mevada, and A.B. Pandit, “Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles”, Bioresour Technol., vol. 239, pp. 117–126, 2017. [18] S. Hashemizad, M. Montazer, and S.S. Mireshghi, “Sonoloading of nano-TiO2 on sono-alkali hydrolyzed polyester fabric”, J. Text. I., vol. 108, no. 1, pp. 117127, 2017. 
[19] H. Fashandi and M. Karimi, “Influence of solvent/ polymer interaction on miscibility of PMMA/PCL blend: thermal analysis approach”, J. Text. Polym., vol. 2, no. 2, pp. 71-78, 2014. [20] N.D. Tissera, R.N. Wijesena, and K.M. Nalin de Silva, “Ultrasound energy to accelerate dye uptake and dye–fiber interaction of reactive dye on knitted cotton fabric at low temperatures”, Ultrason. Sonochem., vol. 29, pp. 270-278, 2016. [21] I.M. El-Nahhal, A.A. Elmanama, N.M. El Ashgar, N. Amara, and M.M. Chehimi, “Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity”, Ultrason. Sonochem., vol. 38, pp. 478-487, 2017. [22] R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties”, Colloid. Surface B., vol. 79, no. 1, pp. 5–18, 2010.  [23] A. Grancaric and A. Tarbuk, “EDA modified PET fabric treated with activated natural zeolite nanoparticles”, Mater. Technol., vol. 24, no. 1, pp. 58–63, 2013. [24] M. Karimi and F. Asadi, “Analyzing the diffusion process for polymer solution using FTIR-ATR technique: special considerations”, J. Text. Polym., vol. 1, no. 1, pp. 1-8, 2013. [25] A.X. Fujishima and D.A. Zhang, “TiO2 photo catalysis and related surface phenomena”, Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582, 2008. [26] U. Joost, K. Juganson, M. Visnapuu, M. Mortimer, A. Kahru, E. Nõmmiste et al., “Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids”, J. Photoch. Photobio. B., vol. 142, pp.178-185, 2015. [27] A. Nazari, M. Montazer, and M. Dehghani-Zahedani, “Simultaneous dyeing and mothproofing of wool against Dermestes Maculatus with madder optimized by statistical model”, Clean. Technol. Envir., vol. 16, no. 8, pp. 1675-1686, 2014. [28] W. Nitayaphat, P. Jirawongcharoen, and T. Trijaturon, “Self-cleaning properties of silk fabrics functionalized with TiO2/SiO2 Composites”, J. Nat. Fibers, vol. 15, no. 2, pp. 262-272, 2018. [29] M. Montazer and S. Seifollahzadeh, “Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties”, Color Technol., vol. 127, no. 5, pp. 322– 327, 2011. [30] M. Yu, Z. Wang, H. Liu, S. Xie, J. Wu, H. Jiang et al., “Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized”, ACS Appl. Mater. Inter., vol. 5, no. 9, pp. 3697–3703, 2013. [31] L. Guo, X. Chen, X. Liu, W. Feng, B. Li, C. Lin et al., 
 “Surface modifications and nano-composite coatings to improve the bonding strength of titanium-porcelain”, Mater. Sci. Eng. C., vol. 61, pp.143-148, 2016. [32] E. Katouei-Zadeh, S.M. Zebarjad, and K. Janghorban, “Synthesis and enhanced visible-light activity of N-doped TiO2 nano-additives applied over cotton textiles”, J. Mater. Res. Technol., vol. 7, no. 3, pp. 204211, 2018. [33] A. Nazari, M. Montazer, M.B. Moghadam, and 
 M. Anary-Abbasinejad, “Self-cleaning properties of bleached and cationized cotton using nano-TiO2: a statistical approach”, Carbohyd. Polym., vol. 83, no. 3, 
 pp.1119–1127, 2011. [34] M. Rastgoo, M. Montazer, R.M.A. Malek, T. Harifi, and M. Mahmoudi-Rad, “Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile”, Ultrason. Sonochem., vol. 31, no. 4, pp. 257–266, 2016. [35] S. Ghayempour, M. Montazer, and M. Mahmoudi-Rad, 
 “Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties”, Carbohyd. Polym., vol. 136, pp. 232–241, 2016. [36] T. Harifi and M. Montazer, “Photo, bio, and magnetoactive colored polyester fabric with hydrophobic/ hydrophilic and enhanced mechanical properties through synthesis of TiO2/Fe3O4/Ag nanocomposite”, Ind. Eng. Chem. Res., vol. 53, no. 3, pp. 1119–1129, 2014. [37] M. Shateri-Khalilabad and M.E. Yazdanshenas, “Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection”, Text. Res. J., vol. 83, no. 10, pp. 9931004, 2013. [38] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M. Anary-Abbasinejad, “NanoTiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with polycarboxylic acids under UV and high temperature”, Appl. Catal. A-Gen., vol. 371, no. 1-2, pp.10–16, 2009. [39] N.A. Ibrahim, K. EL-Badry, B.M. Eid, and T.M. Hassan, “A new approach for biofinishing of cellulosecontaining fabrics using acid cellulases”, Carbohyd. 
Polym., vol. 83, no. 1, pp. 116–121, 2011.   [40] C.A. Kumamoto, “Candida biofilms”, Curr. Opin. Microbiol., vol. 5, no. 6, pp. 608–611, 2002. [41] R.M. Donlan, “Biofilm formation: a clinically relevant microbiological process”, Clin. Infect. Dis., vol. 33, no. 8, pp.1387–1392, 2001. [42] E.P. Rustchenko-Bulgac, “Variations of candida albicans electrophoretic karyotypes”, J. Bacteriol., vol. 173, no. 20, pp. 6586–6596, 1991. [43] A.R. Holmes, S. Tsao, S.W. Ong, E. Lamping, K. Niimi, B.C. Monk et al., “Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2”, Mol. Microbiol., vol. 62, no. 1, pp. 170–186, 2006. [44] T. Jones, N.A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B.B. Magee et al., “The diploid genome sequence of Candida albicans”, Proc. Natl. Acad. Sci. USA, vol. 101, no. 19, pp. 7329–7334, 2004. [45] E. Beltrán-Partida, B. Valdez-Salas, M. CurielÁlvarez, S. Castillo-Uribe, A. Escamilla, and N. Nedev, “Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds”, Mater. Sci. Eng. C., vol. 76, pp. 59-65, 2017. [46] Ş.S. Uğur, M. Sarııšık, and A.H. Aktaş, “Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection”, Fiber. Polym., vol. 12, no. 2, pp. 190– 196, 2011.   [47] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M. Anary-Abbasinejad, “NanoTiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with polycarboxylic acids under UV and high temperature”, Appl. Catal. A-Gen., vol. 371, no. 1-2, pp. 10–16, 2009. [48] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M.B. Moghadam, “Optimization of cotton crosslinking with polycarboxylic acids and nano-TiO2 using central composite design”, J. Appl. Polym. Sci., vol. 117, no. 5, pp. 2740–2748, 2010. [49] A. Haji, M. Nasiriboroumand, and S.S. Qavamnia, “Cotton dyeing and antibacterial finishing using agricultural waste by an eco-friendly process optimized by response surface methodology”, Fiber. Polym., vol. 19, no. 11, 2359-2364, 2018. [50] A. Haji, “Improved natural dyeing of cotton by plasma treatment and chitosan coating. Optimization by response surface methodology”, Cell. Chem. Technol., vol. 51, no. 9-10, pp. 975-982, 2017. [51] A. Haji, A. Mousavi-Shoushtari, F. Mazaheri, and S.E. Tabatabaeyan, “RSM optimized self-cleaning nanofinishing on polyester/wool fabric pretreated with oxygen plasma”, J. Text. I., vol. 107, no. 8, pp. 985994, 2016. [52] A. Haji, S.S. Qavamnia, and M. Nasiriboroumand, “The use of D-optimal design in optimization of wool dyeing with Juglans regia bark”, Ind. Textila, vol. 69, no. 2, pp. 104-110, 2018.
[53] A. Haji, A. Mousavi-Shoushtari, and M. Abdouss, “RSM optimization of plasma initiated grafting of acrylic acid onto polypropylene nonwoven”, J. Macromol. Sci. A., vol. 51, no. 1, pp. 76–87, 2014.