Open Access and Free of Charge

Document Type : Original Article


1 Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.

2 Department of Textile Engineering, Textile Excellence and Research Centers, Amirkabir University of Technology, Tehran, Iran.

3 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.

4 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.


Threads or yarns are key building blocks in constructing complicated fibrous structures for many biomedical applications such as scaffolds to direct cells in tissue engineering applications. In this study, protein-loaded aligned fibers with core-shell structures were successfully fabricated by combining coaxial electrospinning with a rotating disk collector. A model protein, bovine serum albumin (BSA) as a core was incorporated into shell material, including PCL/gelatin (50:50) hybrid and then electrospun aligned core-shell fibers on the rotating disk. After manually twisting the aligned fiber bundle, the prepared threads were crosslinked with genipin. The fibers and thread morphologies were characterized by scanning electron microscopy (SEM), fluorescent microscopy (FM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR), and the threads tensile properties were then evaluated. The well-aligned fibers (with a mean diameter of 1.472±0.444 µm) with uniform core-shell structures without any bead formation and homogeneous protein incorporation into them were obtained using a rotating wheel at 1300 rpm. BSA-loaded threads with a diameter of 150-250 μm were finally prepared from aligned fiber bundle by keeping their well-aligned structure. The tensile tests revealed that fibrous thread with the modulus of 34.2 cN/tex had proper tensile properties for tissue engineering approaches. FTIR thus proved that the crosslinking was successful between thread and genipin. After crosslinking, threads retained their fibrous structure and demonstrated the improvement in the tensile properties (modulus increased to 40.64 cN/tex). These findings are promising to promote biomedical agents-loaded fibrous threads for tissue suturing and tissue regeneration applications.


[1] D. Mohebbi-Kalhori, A. Behzadmehr, C.J. Doillon, and A. Hadjizadeh, “Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering”, J. Artif Organs, vol. 15, no. 3, pp. 250-265, 2012. [2] M.J. Moreno, A. Ajji, D. Mohebbi-Kalhori, M. Rukhlova, A. Hadjizadeh, and M.N. Bureau, “Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold”, J. Biomed. Mater. Res. B: Appl. Biomater., vol. 97, no. 2, pp. 201-214, 2011. [3] A. Hadjizadeh, H. Savoji, and A. Ajji, “A facile approach for the mass production of submicro/micro poly(lactic acid) fibrous mats and their cytotoxicity test towards neural stem cells”, Biomed. Res. Int., vol. 2016, Article ID 8921316, 12 pages, 2016.  [4] J. Blaker, S. Nazhat, and A. Boccaccini, “Development and characterization of silver-doped bioactive glasscoated sutures for tissue engineering and wound healing applications”, Biomaterials, vol. 25, no. 7-8, pp. 1319-1329, 2004. [5] Y.Z. Cai, G.R. Zhang, L.L. Wang, Y.Z. Jiang, H.W. Ouyang, and X.H. Zou, “Novel biodegradable threedimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering”, J. Biomed. Mater. Res. Part A, vol. 100, no. 5, pp. 1187-1194, 2012. [6] F. Haghighat and S.A.H. Ravandi, “Mechanical properties and in-vitro degradation of PLGA suture manufactured via electrospinning”, Fiber. Polym., 
 vol. 15, no. 1, pp. 71-77, 2014. [7] H.H. Xu, F.C. Eichmiller, and A.A. Giuseppetti, “Reinforcement of a self-setting calcium phosphate cement with different fibers”, J. Biomed. Mater. Res., vol. 52, no. 1, pp. 107-114, 2000. [8] A. Hadjizadeh and C.J. Doillon, “Directional migration of endothelial cells towards angiogenesis using polymer fibers in a 3D co-culture system”, J. Tissue Eng. Regen. Med., vol. 4, no. 7, pp. 524-531, 2010. [9] A. Hadjizadeh, C.J. Doillon, and P. Vermette, “Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment”, Biomacromolecules, vol. 8, no. 3, pp. 864-873, 2007. [10] N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, and G.H. Kazemzadeh, “Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers”, Biomed. Mater., vol. 13, no. 5, pp. 055014, 
 2018. [11] A. Hadjizadeh, “Acetaldehyde plasma polymer-coated PET fibers for endothelial cell patterning: chemical, topographical, and biological analysis”, J. Biomed. Mater. Res. B Appl. Biomater., vol. 94, no. 1, pp. 11-21, 
 2010. [12] S.  Agarwal, A. Greiner, and J.H. Wendorff, “Functional materials by electrospinning of polymers”, Prog. Polym. Sci., vol. 38, no. 6, pp. 963-991, 2013. [13] X. Wang, B. Ding, and B. Li, “Biomimetic electrospun nanofibrous structures for tissue engineering”, Mater. Today, vol. 16, no. 6, pp. 229-241, 2013. [14] A. Hadjizadeh, A. Ajji, M. Jolicoeur, B. Liberelle, and G. De Crescenzo, “Effects of electrospun nanostructure versus microstructure on human aortic endothelial cell behavior”, J. Biomed. Nanotechnol., vol. 9, no. 7, 
 pp. 1195-1209, 2013. [15] F. Zamani, M. Amani-Tehran, M. Latifi, and M.A. Shokrgozar, “The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation”, J. Mater. Sci. Mater. Med., vol. 24, no. 6, pp. 1551-1560, 2013. [16] X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications”, J. Controlled Release, vol. 185, pp. 12-21, 2014. [17] F. Zamani, F. Jahanmard, F. Ghasemkhah, S. AmjadIranagh, R. Bagherzadeh, M. Amani-Tehran et al., “Nanofibrous and Nanoparticle Materials as DrugDelivery Systems, in: Nanostructures for Drug Delivery, E. Andronescu and A. Grumezescu Eds., Elsevier, 2017, pp. 239–270. [18] S.P. Miguel, D.R. Figueira, D. Simões, M.P. Ribeiro, 
P. Coutinho, P. Ferreira et al., “Electrospun polymeric nanofibres as wound dressings: a review”, Colloid.  Surface. B: Biointerface., vol. 169, pp. 60-71, 2018. [19] S.H. Nemati and A. Hadjizadeh, “Gentamicin-eluting titanium dioxide nanotubes grown on the ultrafinegrained titanium”, AAPS Pharm. Sci. Technol., vol. 18, no. 6, pp. 2180-2187, 2017. [20] S. Moghassemi, A. Hadjizadeh, and K. Omidfar, “Formulation and characterization of bovine serum albumin-loaded niosome”, AAPS Pharm. Sci. Technol., vol. 18, no. 1, pp. 27-33, 2017. [21] K. Modaresifar, A. Hadjizadeh, and H. Niknejad, “Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery”, Artif. Cells Nanomed. Biotechnol., vol. 46, no. 8, pp. 1799-1808, 2018. [22] S. Moghassemi, A. Hadjizadeh, A. Hakamivala, and K. Omidfar, “Growth factor-loaded nano-niosomal gel formulation and characterization”, AAPS Pharm. Sci. Technol., vol. 18, no. 1, pp. 34-41, 2017. [23] W. Ji, Y. Sun, F. Yang, J.J. van den Beucken, M. Fan, Z. Chen et al., “Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications”, Pharm. Res., vol. 28, no. 6, pp. 1259-1272, 2011.  [24] R.A. Perez and H.-W. Kim, “Core–shell designed scaffolds for drug delivery and tissue engineering”, Acta Biomater., vol. 21, pp. 2-19, 2015.  [25] W. Cui, Y. Zhou, and J. Chang, “Electrospun nanofibrous materials for tissue engineering and drug delivery”, Sci. Technol. Adv. Mater., vol. 11, no. 1, 
 pp. 014108, 2010.  [26] M.V. Natu, H.C. de Sousa, and M. Gil, “Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers”, Int. J. Pharm., vol. 397, no. 1, pp. 50-58, 2010. [27] F. Song, X.-L. Wang, and Y.-Z. Wang, “Poly(Nisopropylacrylamide)/poly(ethylene oxide) blend nanofibrous scaffolds: thermo-responsive carrier for controlled drug release”, Colloid. Surface. B: Biointerface, vol. 88, no. 2, pp. 749-754, 2011. [28] Y. Su, Q. Su, W. Liu, M. Lim, J.R. Venugopal, X. Mo 
 et al., “Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering”, Acta Biomater., vol. 8, no. 2, pp. 763771, 2012. [29] H. Jiang, L. Wang, and K. Zhu, “Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents”, J. Control. Release, vol. 193, pp. 296-303, 2014. [30] M. Maleki, M. Latifi, M. Amani-Tehran, and 
 S. Mathur, “Electrospun core-shell nanofibers for drug encapsulation and sustained release”, Polym. Eng. Sci., vol. 53, no. 8, pp. 1770-1779, 2013. [31] A. Yarin, “Coaxial electrospinning and emulsion electrospinning of core-shell fibers”, Polym. Adv. Technol., vol. 22, no. 3, pp. 310-317, 2011. [32] A. Moghe and B. Gupta, “Co-axial electrospinning for nanofiber structures: preparation and applications”, Polym. Rev., vol. 48, no. 2, pp. 353-377, 2008. [33] M. Yousefzadeh and F. Ghasemkhah, “Design of Porous, Core-Shell, and Hollow Nanofibers”, in: Handbook of Nanofibers, A. Barhoum, M. Bechelany, and A. Makhlouf Eds.,  Springer, Cham, 2018, pp. 1-58. [34] X. Qin, “Coaxial electrospinning of nanofibers”, in: Electrsopun Nanofibers, M. Afshari Ed., Cambridge:Elsevier, 2017, pp. 41-71. [35] Z.M. Huang, C.L. He, A. Yang, Y. Zhang, X.J. Han, J. Yin et al., “Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning”, J. Biomed. Mater. Res. Part A, vol. 77, no. 1, pp. 169-179, 
 2006. [36] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues”, Mater. Today, vol. 9, no. 3, pp. 40-50, 2006. [37] A. Theron, E. Zussman, and A. Yarin, “Electrostatic field-assisted alignment of electrospun nanofibers”, Nanotechnology, vol. 12, no. 3, pp. 384, 2001. [38] P. Katta, M. Alessandro, R. Ramsier, and G. Chase, “Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector”, Nano Letters, vol. 4,  no. 11, pp. 2215-2218, 2004. [39] E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, and G.L. Bowlin, “Electrospinning collagen and elastin: preliminary vascular tissue engineering”, Front. Biosci., vol. 9, 
 no. 1422, pp. 1422-1432, 2004. [40] P.D. Dalton, D. Klee, and M. Möller, “Electrospinning with dual collection rings”, Polymer, vol. 46, no. 3, 
 pp. 611-614, 2005. [41] F. Ghasemkhah, M. Latifi, A. Hadjizadeh, and M.A. Shokrgozar, “Potential core-shell designed scaffolds with a gelatin-based shell in achieving controllable release rates of proteins for tissue engineering approaches”, J. Biomed. Mater. Res. Part A, 2019. online: [42] S. Panzavolta, M. Gioffrè, M.L. Focarete, C. Gualandi, L. Foroni, and A. Bigi, “Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber 
morphology after exposure to water”, Acta Biomater., vol. 7, no. 4, pp. 1702-1709, 2011. [43] N. Reddy, R. Reddy, and Q. Jiang, “Crosslinking biopolymers for biomedical applications”, Trend. Biotechnol., vol. 33, no. 6, pp. 362-369, 2015. [44] S.A. Poursamar, A.N. Lehner, M. Azami, S. EbrahimiBarough, A. Samadikuchaksaraei, and A.P.M. Antunes, “The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold”, Mater. Sci. Eng. C, vol. 63, pp. 1-9, 2016. [45] S.-F. Chou, L.-J. Luo, J.-Y. Lai, and D.H.-K. Ma, “Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials”, Mater. Sci. Eng. C, vol. 71, pp. 1145-1155, 2017. [46] S. Gautam, A.K. Dinda, and N.C. Mishra, “Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method”, Mater. Sci. Eng. C, vol. 33, no. 3, pp. 1228-1235, 2013. [47] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, “Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering”, Biomaterials, vol. 29, no. 34, pp. 4532-4539, 217. [48] M.S. Kim, I. Jun, Y.M. Shin, W. Jang, S.I. Kim, and H. Shin, “The development of genipin-crosslinked poly(caprolactone)(PCL)/gelatin nanofibers for tissue engineering applications”, Macromol. Biosci., vol. 10, no. 1, 91-100, 2010. [49] Q. Li, X. Wang, X. Lou, H. Yuan, H. Tu, B. Li et al., “Genipin-crosslinked electrospun chitosan nanofibers: determination of crosslinking conditions and evaluation of cytocompatibility”, Carbohyd. Polym., vol. 130, pp. 166-174, 2015. [50] C. Del Gaudio, S. Baiguera, M. Boieri, B. Mazzanti, D. Ribatti, A. Bianco et al., “Induction of angiogenesis using VEGF releasing genipin-crosslinked electrospun gelatin mats”, Biomaterials, vol. 34, no. 31, pp. 77547765, 2013. [51] Y. Liu and C. Pellerin, “Highly oriented electrospun fibers of self-assembled inclusion complexes of poly(ethylene oxide) and urea”, Macromolecules, 
 vol. 39, no. 26, pp. 8886-8888, 2006. [52] C. Lim, E. Tan, and S. Ng, “Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers”, Appl. Phys. Lett., vol. 92, no. 14, pp. 141908, 2008. [53] N.T.B. Linh, Y.K. Min, H.Y. Song, and B.T. Lee, “Fabrication of polyvinyl alcohol/gelatin nanofibercomposites and evaluation of their material properties”, J. Biomed. Mater. Res. Part B: Appl. Biomat., vol. 95, no. 1, pp. 184-191, 2010. [54] D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, and 
 G. Fortunato, “Structure and morphology of electrospun polycaprolactone/gelatine nanofibers”, 
Eur. Polym. J., vol. 49, no. 8, pp. 2052-2061, 2013. [55] A. Baji, Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, “Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties”, Compos. Sci. Technol., vol. 70, no. 5, 
 pp. 703-718, 2010.