Open Access and Free of Charge

Document Type : Original Article

Authors

1 Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-8311, Iran.

2 Department of Textile Engineering, Pamukkale University, 20160, Denizli, Turkey.

Abstract

Bone tissue engineering is the most promising therapeutic method to alleviate the fast-growing request for bone grafts in nonunion bone defects. It is founded on the use of implanted autologous cells or induced stem cells to form bone tissues on naturally derived or synthetic scaffolds. Nanofibers are being increasingly implemented in bone tissue engineering field as scaffolding materials to regenerate new bone tissues owing to their high surface area-to-volume ratio, high porosity with an interconnected pore structure and the suitable surface structure for cell attachment, proliferation, and differentiation. PLA biopolymer has captured the most attention and interest as a bone tissue engineering material since PLA is easily processable and degrades and disintegrates into natural metabolites while its degradation rate matches with the healing time of damaged human bone tissues. So, the potential of using PLA nanofibers in bone tissue engineering is a serious goal for scientists in novel investigations. This review gives detailed information about the recent developments and applications of PLA nanofibers as scaffolds for bone tissue regeneration.

Keywords

[1] A.A. Aldana and G.A. Abraham, “Current advances in electrospun gelatin-based scaffolds for tissue engineering applications”, Int. J. Pharmaceut., vol. 523, no. 2, pp. 441-453, 2017. [2] T. Xu, H. Yang, D. Yang, and Z.-Z. Yu, “Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering”, ACS Appl. Mater. Interf., vol. 9, no. 25, pp. 21094-21104, 2017. [3] L. Zhang and T.J. Webster, “Nanotechnology and nanomaterials: promises for improved tissue regeneration”, Nano Today, vol. 4, no. 1, pp. 66-80, 2009. [4] R.S. Langer and J.P. Vacanti, “Tissue engineering: the challenges ahead”, Sci. Am., vol. 280, no. 4, pp. 86–89, 1999. [5] A. Magiera, J. Markowski, E. Menaszek, J. Pilch, and S. Blazewicz, “PLA-based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering”, J. Nanomater., vol. 2017, pp. 1-11, 2017. [6] R. Cortesini, “Stem cells tissue engineering and organogenesis in transplantation”, Transplant Immunology, vol. 15, no. 2, pp. 81–89, 2005. [7] D. Puppi, F. Chiellini, A.M. Piras, and E. Chiellini, “Polymeric materials for bone and cartilage repair”, Prog. Polym. Sci., vol. 35, no. 4, pp. 403-440, 2010. [8] R.L. Dahlin, F.K. Kasper, and A.G. Mikos, “Polymeric nanofibers in tissue engineering”, Tissue Eng. Part B: Rev., vol. 17, no. 5, pp. 349-364, 2011. [9] L. Li, J.M. Stiadle, H.K. Lau, A.B. Zerdoum, X. Jia, S.L. Thibeault, and K.L. Kiick, “Tissue engineeringbased therapeutic strategies for vocal fold repair and regeneration”, Biomaterials, vol. 108, pp. 91-110, 2016. [10] J. Venugopal and S. Ramakrishna, “Applications of polymer nanofibers in biomedicine and biotechnology”, Appl. Biochem. Biotechnol., vol. 125, no. 3, pp. 147-157, 2005. [11] S.D. McCullen, S. Ramaswamy, L.I. Clarke, and R.E. Gorga, “Nanofibrous composites for tissue engineering applications”, WRIES: Nanomed. Nanobi., vol. 1, no. 4, pp. 369-390, 2009. [12] J. Venugopal and S. Ramakrishna, “Applications of polymer nanofibers in biomedicine and biotechnology”, Appl. Bioch. Biotech., vol. 125, no. 3, pp. 147-158, 2005. [13] E. Engel, A. Michiardi, M. Navarro, D. Lacroix, and J.A. Planell, “Nanotechnology in regenerative medicine: the materials side”, Trends Biotechnol., vol. 26, no. 1, pp. 39-47, 2008. [14] J. Venugopal, S. Low, A. Tar Choon, and S. Ramakrishna, “Interaction of cells and nanofiber scaffolds in tissue engineering”, J. Biomed. Mater. Res. B, vol. 84, no. 1, pp. 34-48, 2008. [15] M. Cavo and S. Scaglione, “Scaffold microstructure effects on functional and mechanical performance: integration of theoretical and experimental approaches for bone tissue engineering applications”, Mater. Sci. Eng. C, vol. 68, pp. 872-879, 2016. [16] S. Kuttappan, D. Mathew, and M.B. Nair, “Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering-A mini review”, Int. J. Biol. Macromol., vol. 93, pp. 13901401, 2016. [17] Z.-Z. Zhang, D. Jiang, J.X. Ding, S.J. Wang, L. Zhang, J.Y. Zhang et al., “Role of scaffold mean pore size in meniscus regeneration”, Acta Biomater., vol. 43, pp. 314-326, 2016. [18] H. Janik and M. Marzec, “A review: fabrication of porous polyurethane scaffolds”, Mater. Sci. Eng. C, vol. 48, pp. 586-591, 2015. [19] A. Doustgani, “Doxorubicin release from optimized electrospun polylactic acid nanofibers”, J. Ind. Text., 2016. [20] A. Doustgani and E. Ahmadi, “Melt electrospinning process optimization of polylactic acid nanofibers”, J. Ind. Text., vol. 45, no. 4, pp. 626-634, 2016. [21] R. Casasola, N.L. Thomas, and S. Georgiadou, “Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defectfree nanofibers”, J. Polym. Sci. Polym. phys., vol. 54, pp. 1483–1498, 2016. [22] Y. Ramot, M. Haim-Zada, A.J. Domb, and A. Nyska, “Biocompatibility and safety of PLA and its copolymers”, Adv. Drug. Deliver. Rev., vol. 107, pp. 153-162, 2016. [23] R. Arjmandi, A. Hassan, and Z. Zakaria, “Polylactic acid green nanocomposites for automotive applications”, in Green Biocomposites: Design and Applications, M. Jawaid, M.S. Salit, and O.Y. Alothma Ed., Springer International: Cham, 2017, pp. 193-208. [24] R. Revati, M.S.A. Majid, and M. Normahira, “Biodegradable poly(lactic acid) scaffold for tissue engineering: a brief review”, Iran. J. Polym. Sci. Technol., vol. 1, no. 1, pp. 16-24, 2015. [25] A.A. Salifu, C. Lekakou, and F.H. Labeed, “Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering”, J. Biomed. Mater. Res.  A, vol. 105A, pp. 1911–1926, 2017. [26] T. Xu, J.M. Miszuk, Y. Zhao, H. Sun, and H. Fong, “Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering”, Adv. Healthc. Mater., vol. 4, no. 15, pp. 2238-2246, 2015. [27] G. Tetteh, A.S. Khan, R.M. Delaine-Smith, G.C. Reilly, and I.U. Rehman, “Electrospun polyurethane/ hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxy apatite particles”, J. Mech. Behav. Biomed. Mater., vol. 39, pp. 95–110, 2014. [28] Y. Wang, X. Yang, Z. Gu, H. Qin, L. Li, J. Liu, and X. Yua, “In vitro study on the degradation of lithiumdoped hydroxyapatite for bone tissue engineering scaffold”, Mater. Sci. Eng. C, vol. 66, pp. 185-192, 2016. [29] A. Tautzenberger, A. Kovtun, and A. Ignatius, “Nanoparticles and their potential for application in bone”, Int. J. Nanomed., vol. 7, pp. 4545-4557, 2012. [30] L. Polo-Corrales, M. Latorre-Esteves, and J.E. Ramirez-Vick, “Scaffold design for bone regeneration”, J. Nanosci. Nanotechno., vol. 14, pp. 15-56, 2014. [31] S. Raisin, E. Belamie, and M. Morille, “Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage”, Biomaterials, vol. 104, pp. 223-237, 2016. [32] A. Heidarkhan Tehrani, “Exploring methods of preparing functional cartilage-bone xenografts for joint repair”, Ph.D. Thesis, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 2015. [33] M. Bañobre-López, Y. Piñeiro-Redondo, R. De Santis, A. Gloria, L. Ambrosio, A. Tampieri et al., “Poly(caprolactone) based magnetic scaffolds for bone tissue engineering”, J. Appl. Phys., vol. 109, no. 7, 2011. [34] L. Uebersax, T. Apfel, K.M. Nuss, R. Vogt, H.Y. Kim, L. Meinel, D.L. Kaplan, V. Dediu 
 et al., “Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep”, Eur. J. Pharm. Biopharm., vol. 85, pp. 107118, 2013. [35] A.C.A. Wan, E. Khor, and G.W. Hastings, “Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds”, J. Biomed. Mater. Res., vol. 41, pp. 541–548, 1998. [36] G. Caetano, R. Violante, A. Beatriz Sant´Ana, A. Batista Murashima, M. Domingos, A. Gibson, P. Bártolo et al., “Cellularized versus decellularized scaffolds for bone regeneration”, Mater. Lett., vol. 182, pp. 318-322, 2016. [37] T. Muthukumar, A. Aravinthan, J. Sharmila, N.S. Kim, and J.H. Kim, “Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K”, Carbohyd. Polym., vol. 152, pp. 566-574, 2016. [38] H. Qi, Z. Ye, H. Ren, N. Chen, Q. Zeng, X. Wu, and T. Lu, “Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering”, Life Sci., vol. 44, pp. 139-148, 2016. [39] Z. Rezvani, J.R. Venugopal, A.M. Urbanska, D.K. Mills, S. Ramakrishna, and M. Mozafari, “A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends”, Nanomed. Nanotechnolo., vol. 12, no. 7, pp. 2181-2200, 2016. [40] K. T, “Apatite formation on organic polymers by a biomimetic process”, Eur. J. Sol. State Inor., vol. 32, pp. 819–827, 1995. [41] S. Saber-Samandari, S. Saber-Samandarib, F. Ghonjizade-Samanic, J. Aghazadehc, and A. Sadeghid, “Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite”, Ceram. Int., vol. 42, no. 9, pp. 11055-11062, 2016. [42] G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, and S. Ryu, “Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration”, J. Biomed. Mater. Res. A, vol. 82A, no. 2, pp. 445-454, 2007. [43] S. Chen, Z. He, G. Xu, and X. Xiao, “Fabrication of nanofibrous tubular scaffolds for bone tissue engineering”, Mater. Lett., vol. 182, pp. 289-293, 2016. [44] S.D. McCullen, H. Autefage, A. Callanan, E. Gentleman, and M.M. Stevens, “Anisotropic fibrous scaffolds for articular cartilage regeneration”, Tissue Eng. Part A, vol. 18, pp. 2073–2083, 2012. [45] A. Shafiee, M. Soleimani, G. Abedi Chamheidari, E. Seyedjafari, M. Dodel, A. Atashi, and Y. Gheisari, “Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells”, J. Biomed. Mater. Res. A, vol. 99, pp. 467–478, 2011. [46] V. Guarino, M. Alvarez-Perez, V. Cirillo, and L. Ambrosio, “hMSC interaction with PCL and PCL/ gelatin platforms: a comparative study on films and electrospun membranes”, J. Bioact. Compat. Polym., vol. 26, pp. 144–160, 2011. [47] S.M. Richardson, J.A. Hoyland, R. Mobasheri, C. Csaki, M. Shakibaei, and  A. Mobasheri, “Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering”, J. Cell. Physiol., vol. 222, no. 1, pp. 23-32, 2010. [48] V. Guarino, V. Cirillo, P. Taddei, M.A. Alvarez-Perez, and L. Ambrosio, “Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response”, Macromol. Biosci., vol. 11, pp. 1694–1705, 2011. [49] Y. Wang, U.J. Kim, D.J. Blasioli, H.J. Kim, and D.L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells”, Biomaterials, vol. 26, no. 34, pp. 7082-7094, 2005. [50] W.-J. Li, R. Tuli, C. Okafor, A. Derfoul, K.G. Danielson, D.J. Hall, and R.S. Tuan, “A threedimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells”, Biomaterials, vol. 26, no. 6, pp. 599-609, 2005. [51] A.H. Tehrani, S. Singh, and A. Oloyede, “Local stressstrain distribution and load transfer across Cartilage Matrix at Micro-scale Using Combined MicroscopyBased Finite Element Method”, In: 23rd Annual Conference of the Australasian Society of Biomaterials and Tissue Engineering, Mantra Resort Lorne, VIC; 2014. [52] S. Chahal, F.S.J. Hussain, and M.M. Yusoff, “Characterization of modified cellulose (MC)/ poly(vinyl alcohol) electrospun nanofibers for bone tissue engineering”, Procedia Eng., vol. 53, pp. 683– 688, 2013. [53] J. Sharma, M. Lizu, M. Stewart, K. Zygula, Y. Lu, R. Chauhan, X. Yan et al., “Multifunctional nanofibers towards active biomedical therapeutics”, Polymers, vol. 7, pp. 186-219, 2015. [54] S.G. Kumbar, S. Prasad Nukavarapu, R. James, L.S. Nair, and C.T. Laurencin, “Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering”, Biomaterials, vol. 29, no. 30, pp. 41004107, 2008. [55] P. Gentile, V. Chiono, I. Carmagnola, and P.V. Hatton, “An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering”, Int. J. Mol. Sci., vol. 15, pp. 3640-3659, 2014. [56] R.Z. Khoo, H. Ismail, and W.S. Chow, “Thermal and morphological properties of poly(lactic acid)/ nanocellulose nanocomposites”, Procedia Chem., vol. 19, pp. 788-794, 2016. [57] C. Liu, H. Man Wong, and S. Chin Tjong, “Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility”, Polymers, vol. 8, no. 8, pp. 287, 2016. [58] J. Li, Z. Song, L. Gao, and H. Shan, “Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method”, Polym. Bull., vol. 73, no. 8, pp. 2121-2128, 2016. [59] R. James, O.S. Manoukian, and S.G. Kumbar, “Poly(lactic acid) for delivery of bioactive macromolecules”, Adv. Drug Deliver. Rev., vol. 107, pp. 277-288, 2016. [60] A. Khoddami, O. Avinc, and F. Ghahremanzadeh, “Improvement in poly(lactic acid) fabric performance via hydrophilic coating”, Prog. Org. Coat., vol. 72, no. 3, pp. 299-304, 2011. [61] X. Liu, J. Aho, S.G. Baldursdottir, A. Bohr, H. Qu, L. Porskjær Christensen, J. Rantanen et al., “The effect of poly(lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats”, Int. J. Pharm., vol. 529, pp. 371–380, 2017. [62] M. Santoro, S.R. Shah, J.L. Walker, and A.G. Mikos, “Poly(lactic acid) nanofibrous scaffolds for tissue engineering”, Adv. Drug Deliver. Rev., vol. 107, pp. 206-212, 2016. [63] G. Gorrasi, A. Sorrentino, and R. Pantani, “Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles”, J. Polym. Environ., vol. 23, no. 3, pp. 316-320, 2015. [64] O. Laitinen, I. Alitalo, T. Toivonen, J. Vasenius, P. Törmälä, and S. Vainionpää, “Tissue response to a braided poly-L-lactide implant in an experimental reconstruction of anterior cruciate ligament”, J. Mater. Sci. Mater. M., vol. 4, pp. 547–554, 1993. [65] W. Zhang, S. Ronca, and E. Mele, “Electrospun nanofibres containing antimicrobial plant extracts”, Nanomaterials, vol. 7, no. 42, pp. 42, 2017. [66] H.-W. Kim, H.-H. Lee, and J.C. Knowles, “Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration”, J. Biomed. Mater. Res. A, vol. 79A, no. 3, pp. 643-649, 2006. [67] http://www.natureworksllc.com. [68] F. Fattahi, H. Izadan, and A. Khoddami, “Deep dyeing of poly(lactic acid) and poly(ethylene terephthalate) fabrics using UV/ozone irradiation”, In: 4th International Color and Coatings Congress (ICCC 2011), Tehran, Iran, pp. 22-24, November 2011. [69] F. Fattahi, H. Izadan, and A. Khoddami, “Investigation into the effect of UV/ozone irradiation on dyeing behaviour of poly(lactic acid) and poly(ethylene terephthalate) substrates”, Prog. Color Colorants Coat., vol. 5, pp. 15-22, 2012. [70] A. Khoddami, O. Avinc, and S. Mallakpour, “A novel durable hydrophobic surface coating of poly(lactic acid) fabric by pulsed plasma polymerization”, Prog. Org. Coat., vol. 67, no. 3, pp. 311-316, 2010. [71] O. Avinc, A. Khoddami, and H. Hasani, “A mathematical model to compare the handle of PLA and PET knitted fabrics after different finishing steps”, Fibers Polym., vol. 12, no. 3, pp. 405-413, 2011. [72] A. Jain, K. Reddy Kunduru, A. Basu, B. Mizrahi, A.J. Domb, and W. Khan, “Injectable formulations of poly(lactic acid) and its copolymers in clinical use”, Adv. Drug Deliver. Rev., vol. 107, pp. 213-227, 2016.
[73] F. Fattahi, H. Izadan, and A. Khoddami, “Deep dyeing of poly(lactic acid) and poly(ethylene terephthalate) fabrics using UV/ozone irradiation”, In: 4th  International Color and Coatings Congress, Iran, Tehran, 2011. [74] T.T.T. Nguyen, C. Ghosh, and S.G. Hwang, “Characteristics of curcumin-loaded poly(lactic acid) nanofibers for wound healing”, J. Mater. Sci., vol. 48, pp. 7125–7133, 2013. [75] G. Molea, F. Schonauer, G. Bifulco, and D. D’Angelo, “Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631)”, Brit. J. Plast. Surg., vol. 53, pp. 137141, 2000. [76] W. Hu and Z.-M. Huang, “Biocompatibility of braided poly(L-lactic acid) nanofiber wires applied as tissue sutures”, Polym. Int., vol. 59, pp. 92–99, 2010. [77] H. Tsuji, “Poly(lactic acid) stereocomplexes: a decade of progress”, Adv. Drug Deliver. Rev., vol. 107, pp. 97-135, 2016. [78] S. Honarbakhsh and B. Pourdeyhimi, “Scaffolds for drug delivery, part I: electrospun porous poly(lactic acid) and poly(lactic acid)/poly(ethylene oxide) hybrid scaffolds”, J. Mater. Sci., vol. 46, no. 9, pp. 2874-2881, 2010. [79] D. Karst and Y. Yang, “Method for predicting sorption of small drug molecules onto polylactide”, J. Biomed. Mater. Res. A, vol. 88A, no. 1, pp. 255-263, 2009. [80] J.Y. Park and I.H. Lee, “Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers”, J. Polym. Res., vol. 18, no. 6, pp. 1287-1291, 2010. [81] L. Avérous, Polylactic Acid: Synthesis, Properties and Applications. CH021.indd,  2008. [82] J.-P. Chen and C.-H. Su, “Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering”, Acta Biomater., vol. 7, no. 1, pp. 234–243, 2011. [83] M. Mucha, S. Bialas, and H. Kaczmarek, “Effect of nanosilver on the photodegradation of poly(lactic acid)”, J. Appl. Polym. Sci., vol. 131, no. 8, 2014. [84] J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid polymers”, Polym. Degrad. Stabil., vol. 59, pp. 145-152, 1998. [85] P. Vadgama, T.S. Sampath Kumar, and S. Ramakrishna, “Biocomposite nanofibres and osteoblasts for bone tissue engineering”, Nanotechnology, vol. 18, no. 5, pp. 055101, 2007. [86] G. Narayanan, V.N. Vernekar, E.L. Kuyinu, and C.T. 
Laurencin, “Poly(lactic acid)-based biomaterials for orthopaedic regenerative engineering”, Adv. Drug Deliver. Rev., vol. 107, pp. 247-276, 2016. [87] P. Saini, M. Arora, and M.N.V.R. Kumar, “Poly(lactic acid) blends in biomedical applications”, Adv. Drug Deliver. Rev., vol. 107, pp. 47-59, 2016. [88] V. Thomas, D.R. Dean, M.V. Jose, B. Mathew, S. Chowdhury, and Y.K. Vohra, “Nanostructured biocomposite scaffolds based on collagen  coelectrospun with nanohydroxyapatite”, Biomacromolecules, vol. 8, no. 2, pp. 631-637, 2007. [89] E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L.A. Berglund et al., “Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles”, Carbohyd. Polym., vol. 87, no. 2, pp. 1596-1605, 2012. [90] M. Murariu and P. Dubois, “PLA composites: from production to properties”, Adv. Drug Deliver. Rev., vol. 107, pp. 17-46, 2016. [91] Y. Fu, L. Liu, R. Cheng, and W. Cui, “ECM decorated electrospun nanofiber for improving bone tissue regeneration”, Polymers, vol. 10, no. 3, pp. 272-284, 2018. [92] G. Birhanu, S. Tanha, H. Akbari Javar, E. Seyedjafari, A. Zandi-Karimi, and B. Kiani Dehkordi, “Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery”, Pharm. Dev. Technol., vol. 24, no. 3, pp. 338-347, 2018. [93] C.-J. Su, M.-G. Tu, L.-J. Wei, T.-T. Hsu, C.-T. Kao, T.-H. Chen, and T.-H. Huang, “Calcium silicate/ chitosan-coated electrospun poly(lactic acid) fibers for bone tissue engineering”, Materials, vol. 10, no. 5, pp. 501, 2017. [94] T. Xu, H. Yang, D. Yang, and Z.-Z. Yu, “Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering” ACS Appl. Mater.  Inter., vol. 9, no. 25, pp. 21094-21104, 2017. [95] C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, and Y.H. Park, “Characterization of gelatin nanofiber prepared from gelatin–formic acid solution”, Polymer, vol. 46, no. 14, pp. 5094–5102, 2005. [96] A.A. Salifu, C. Lekakou, and F.H. Labeed, “Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering”, J. Biomed. Mater. Res. A, vol. 105, no. 7, pp. 1911–1926, 2017. [97] Z.M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Compos. Sci. Technol., vol. 63, no. 15, pp. 2223–2253, 2003. [98] X. Jing, H.-Y. Mi, M.R. Salick, T.M. Cordie, X.-F. Peng, and L.-S. Turng, “Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications”, Mater. Sci. Eng. C, vol. 49, pp. 40-50, 2015. [99] W. Shao, J. He, Q. Han, F. Sang, Q. Wang, L. Chen, S. Cui et al., “A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering”, Mater. Sci. Eng., vol. 67, pp. 599–610, 2016. [100] H. Peng, Z. Yin, H. Liu, X. Chen, B. Feng, H. Yuan, B. Su et al., “Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs”, Nanotechnology, vol. 23, no. 48, pp. 485102, 2012. [101] E. Entekhabi, M. Haghbin Nazarpak, F. Moztarzadeh, and A. Sadeghi, “Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity”, Mater. Sci. Eng. C, vol. 69, pp. 380-387, 2016. [102] A. Tambralli, B. Blakeney, J. Anderson, M. Kushwaha, A. Andukuri, D. Dean, and H.W. Jun, “A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers”, Biofabrication, vol. 1, no. 2, pp. 025001, 2009. [103] A. Abdal-Hay, K.H. Hussein, L. Casettari, K.A. Khalil, and A.S. Hamdy, “Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue”, Eng. Appl., vol. 60, pp. 143-150. 2015. [104] A. Mazrouei Sebdani and A. Khoddami, “Alkaline hydrolysis: a facile method to manufacture superhydrophobic polyester fabric by fluorocarbon coating”, Prog. Org. Coat., vol. 72, pp. 638-646, 2011. [105] S. Joneydi, A. Khoddami, and A. Zadhoush, “Novel superhydrophobic top coating on surface modified PVC-coated fabric”, Prog. Org. Coat., vol. 76, pp. 821-826, 2013. [106] Z. Mazrouei-Sebdani, A. Khoddami, and S. Mallakpour, “Improvement in hydrophobicity of polyester fabric finished with fluorochemicals via aminolysis and comparing with nano-silica particles”, Colloid. Polym. Sci., vol. 289, no. 9, pp. 1035, 2011. [107] Y. Cheng, Y. Kuan Wang, P.L. Chen, S. Bo Deng, and R.R. Ruan, “Non-thermal plasma assisted polymer surface modification and synthesis: a review”, Int. J. Agric. Biol. Eng., vol. 7, no. 2, pp. 1-9, 2014. [108] A. Rudolph, M. Teske, S. Illner, V. Kiefel, K. Sternberg, N. Grabow, A. Wree et al., “Surface modification of biodegradable polymers towards better biocompatibility and lower thrombogenicity”, PLOS ONE, vol 10, no. 12, pp. e0142075, 2015. [109] C.-M. Lee, S.W. Yang, S.C. Jung, and B.H. Kim, “Oxygen plasma treatment on 3D-printed chitosan/ gelatin/hydroxyapatite scaffolds for bone tissue engineering”, J. Nanosci. Nanotechnol., vol. 17, no. 4, pp. 2747-2750, 2017. [110] A. Sotoudeh, G. Jahanshahi, A.A. Jahanshahi, M. Ashrafzadeh Takhtfooladil, I. Shabani, and M. Soleimani, “Combination of poly(L-lactic acid) nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits”, Acta Cir. Bras., vol. 27, no. 10, pp. 694-702, 2012. [111] S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds”, Trends Biotechnol., vol. 30, no. 10, pp. 546–554, 2012. [112] S. Torres-Giner, J.V. Gimeno-Alcañiz, M.J. Ocio, and J.M. Lagaron, “Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds”, J. Appl. Polym. Sci., vol. 122, no. 2, pp. 914-925, 2011. [113]  J.B. Lee, S.I. Jeong, M.S. Bae, D.N. Heo, J.S. Heo, Y.S. Hwang, H.W. Lee et al., “Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds”, J. Nanosci. Nanotechno., vol. 11, no. 7, pp. 6371-6376, 2011. [114] M.D. Schofer, S. Fuchs-Winkelmann, C. Gräbedünkel, C. Wack, R. Dersch, M. Rudisile, J.H. Wendorff et al., “Influence of poly(L-lactic acid) nanofibers and BMP-2–containing poly(Llactic acid) nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells”, Sci. World J., vol. 8, pp. 1269–1279, 2008. [115] J.B. Chiu, C. Liu, B.S. Hsiao, B. Chu, and M.  Hadjiargyrou, “Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules”, J. Biomed. Mater. Res. A, vol. 83, no. 4, pp. 1116-1127, 2007. [116] V.J. Chen and P.X. Ma, “Nano-fibrous poly(llactic acid) scaffolds with interconnected spherical macropores”, Biomaterials, vol. 25, pp. 2065–2073, 2004. [117] O. Avinc and A. Khoddami, “Overview  of poly(lactic acid) (PLA) fibre part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres”, Fibre Chem., vol. 41, pp. 391-401, 2009. [118] O. Avinc and A. Khoddami, “Overview of poly(lactic acid) (PLA) fibre part II: wet processing; pretreatment, dyeing, clearing, finishing, and washing properties of poly(lactic acid) fibres”, Fibre Chem., vol. 1, pp. 6878, 2010.