َArticles are OPEN Access and publication is free of charge

Document Type : Review Article


Department of Textile Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 1477893855, Tehran, Iran.


In the recent years, by developing the methods
of nanofibers formation, electro-centrifugal spinning has
been introduced as a new method of nanofibers fabrication.
This nanofabrication technique is a combination of known
technique called electrospinning and a new coming method
called centrifugal spinning. This paper is a comparative study
among conventional electrospinning, centrifugal spinning
and the basis of electro-centrifugal spinning methods. For
instance, although, the distance of nozzle to collector is a
critical operating parameter to determining nanofibers
diameter in electrospinning method, it only shows an effect
on the morphology and has no significant effect on the fiber
diameter in centrifugal spinning. Surface tension and viscosity
of the solutions are the spinning-ability determinatives in these
three methods which are affected by the type of polymers and
solvents and also the concentration of the solution, and need
to be overcome through electrical or centrifugal forces or
both. The effective parameters on the process and the fiber
morphology are investigated for each of the three methods


[1] X. Wang, Z. Li, J. Shi, and Y. Yu, “One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts”, Chem. Rev., vol. 114, no. 19, pp. 9346, 2014.
[2] A. Gholipour-Kanani and S.H. Bahrami, “Review on electrospun Nano fibrous scaffold and their biomedical applications”, Trends Biomater. Artif. Org., vol. 24, no. 2, pp. 93-115, 2010.
[3] J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: methods, materials and applications”, Chem. Rev., vol. 119, no. 8, pp. 5298-5415, 2019.
[4] A.G. Kanani, S.H. Bahrami, A. Taftie, S. Rabbani, and M. Sotoodeh, “Effect of chitosan-PVA blend nanofibrous web on the healing of excision and incision full thickness wounds”, IET-Nanobiotech., vol. 4, no. 4, pp. 109-117, 2010.
[5] Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Compos. Sci. Tech., vol. 63, pp. 2223-2253, 2003.
[6] M. Mirjalil and S. Zohoori, “Review for application of electrospinning and electrospun nanofibers technology in textile industry”, J. Nanostruct. Chem., vol. 6, pp. 207-213, 2016.
[7] S. Ramakrishna, K. Fugihara, W.E. Teo, T.C. Lim, and Z. MA, An Introduction to Electrospinning and Nanofibers, World Scientific Publishing: Singapore, 2005.
[8] A. Gholipour-Kanani, S.H. Bahrami, A. Koochaksaraie, A. Taftie, S. Rabbani, A. Kororiyan, and E. Erfani, “Tissue engineered poly(caprolactone)-chitosan-PVA nanofibrous scaffolds for burn and cutting wound healing”, IET-Nanobiotechnol., vol. 8, no. 2, pp. 123-131, 2014.
[9] T.H. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, “Electrospinning of nanofibers”, J. Appl. Polym. Sci., vol. 96, pp. 557-569, 2005.
[10] I.K. Kwon, S. Kidoaki, and T. Matsuda, “Electrospun nano to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential”, Biomaterials, vol. 26, no. 18, pp. 3929-39, 2005.
[11] H. Fong and D.H. Reneker, “Electrospinning and Formation of Nanofibers”, In Structure Formation in Polymeric Fibers, R. Salem Davis, Hanser, Germany, Chap. 6, 2001, pp. 225-246.
[12] A. Gholipour-Kanani, S.H. Bahrami, and M. Nouri, “Chitosan-poly vinyl alcohol blend nanofibers: morphology, biological (in vitro) and antimicrobial properties”, E-Polymers, vol. 133, pp. 1-12, 2009.
[13] H.K. Noh, S.W. Lee, J.M. Kim, J.E. Oh, K.H. Kim, C.P. Chung, S.C. Choi, W.H. Park, and B.M. Min, “Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts”, Biomaterials, vol. 27, no. 21, pp. 3934-3944, 2006.
[14] R.A.A. Muzzarelli, “Chitins and chitosan’s for the repair of wounded skin, nerve, cartilage and bone”, Carbohyd. Polym., vol. 76, no. 2, pp. 167-182, 2009.
[15] J.W. Lu, Y.L. Zhu, Z.X. Guo, P. Hu, and J. Yu, “Electrospinning of sodium alginate with poly(ethylene oxide)”, Polymer, vol. 47, no. 23, pp. 8026-8031, 2006.
[16] A. Gholipour-Kanani and S.H. Bahrami, “Effect of changing solvents on poly(caprolactone) nanofibrous webs”, J. Nanomater., vol. 2011, pp. 1-10, 2011.
[17] R.M. Aghdam, S. Najarian, S. Shakhesi, S. Khanlari, K. Shaabani, and S. Sharifi, “Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers”, J. App. Polym. Sci., vol. 124, no. 1, pp. 123-131, 2011.
[18] Q. Yao, J.G. Cosme, T. Xu, J.M. Miszuk, P.H. Picciani, H. Fong, and H. Sun, “Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation”, Biomaterials, vol. 115, pp. 115-127, 2016.
[19] C.C. Yu, Y.W. Chen, P.Y. Yeh, Y.S. Hsiao, W.T. Lin, C.W. Kuo, D.Y. Chueh, Y.W. You, J.J. Shyue, Y.C. Chang, and P. Chen, “Random and aligned electrospun PLGA nanofibers embedded in microfluidic chips for cancer cell isolation and integration with air foam technology for cell release”, J. Nanobiotech., vol. 17, pp. 31, 2019.
[20] M.V. Xavier, M.F. Macedo, A.C.B. Benatti, A.L. Jardini, A.A. Rodrigues, M.S. Lopes, C.S. Lambert, R.M. Filho, and P. Kharmandayan, “PLLA synthesis and nanofibers production: viability by human mesenchymal stem cell from adipose tissue”, Proced. CIRP, vol. 49, pp. 213-221, 2016.
[21] Y. Deldar, Y.P. Soltanahmadi, M. Dadashpour, S.M. Saheb, M.R. Yamchi, and N. Zarghami, “An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin loaded nanofibrous mats for potential wound healing applications”, Artif. Cell., Nanomed. Biotechnol., vol. 46, pp. 1-11, 2018.
[22] S. Ebrahimi, M. Fathi, and M. Kadivar, “Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties”, Food Pack. Shelf Life, vol. 22, pp. 100387, 2019.
[23] A. Gholipour-Kanani, S.H. Bahrami, and M. Nouri, “Optimization of chitosan-polyvinyl alcohol electrospinning process by response surface methodology (RSM)”, E-Polymers, vol. 35, pp. 1-9, 2010.
[24] A.G. Kanani, S.H. Bahrami, A. Koochaksaraie, A. Taftie, S. Rabbani, A. Kororiyan, and E. Erfani, “Effect of tissue engineered chitosan-poly(vinyl alcohol) nanofibrous scaffolds on healing of burn wounds of rat skin”, IET-Nanobiotechnol., vol. 6, no. 4, pp. 129-135, 2012.
[25] A. Gholipour-Kanani, S.H. Bahrami, and A. Samadikuchaksaraie, “Novel blend scaffolds from poly(caprolactone)-chitosan-poly(vinyl alcohol): physical, morphological and biological studies”, J. Biomater. Tissue. Eng., vol. 24, no. 2, pp. 245-252, 2014.
[26] A. Gholipour-Kanani and S.H. Bahrami, “Morphological, mechanical and biological properties of novel PCL-Cs/PVA multi-layer nanofibrous scaffolds”, Dig. J. Nanomater. Biostruct., vol. 7, no. 4, pp. 1437-1445, 2012.
[27] A. Gholipour-Kanani, M. Mohsenzadegan, MR Fayyazi, H. Bahrami, and A. Samadikuchaksaraie, “Poly(ɛ-caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for skin excisional and burn wounds in a canine model”, IET-Nanobiotech., vol. 12, no. 5, pp. 619-625, 2018.
[28] C. Prahsarn, W. Klinsukhon, S. Padee, N. Suwannamek, N. Roungpaisan, and N. Srisawat, “Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability”, J. Mater. Sci., vol. 51, pp. 10910–10916, 2016.
[29] M.A. Hassan, B.Y. Yeom, A. Wilkie, B. Pourdeyhimi, and S.A. Khan, “Fabrication of nanofiber meltblown membranes and their filtration properties”, J. Membr. Sci., vol. 427, pp. 336–344, 2013.
[30] X. Xing, Y. Wang, and B. Li, “Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate)”, Opt. Express, vol. 16, no. 14, pp. 10815-10822, 2008.
[31] M.G. Weinberg, G.T. Dee, and T.W. Harding, Flash Spun Web Containing Sub-Micron Filaments and Process for Forming Same, U.S. Patent, 0135020 A1, 2006.
[32] L. He, Y. Zhang, X. Zeng, D. Quan, S. Liao, Y. Zeng, J. Lu, and S. Ramakrishna, “Fabrication and characterization of poly(L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid–liquid phase separation from a ternary polymer–solvent system”, Polymer, vol. 50, no. 16, pp. 4128-4138, 2009.
[33] H.-S. Liao, J. Lin, Y. Liu, P. Huang, A. Jin, and X. Chen, “Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces”, Nanoscale, vol. 8, no. 31, pp. 14814-14820, 2016.
[34] A. Gouda, O.S. Sakr, M. Nasr, and O. Sammour, “Ethanol injection technique for liposomes formulation: an insight into development, influencing factors, challenges and applications”, J. Drug Deliv. Sci. Technol., vol. 61, pp. 102174, 2020.
[35] L. Ren, V. Pandit, J. Elkin, T. Denman, J.A. Cooper, and S.P. Kotha, “Large-scale and highly efficient synthesis of micro and nano fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration”, Nanoscale, vol. 5, pp. 2337-2345, 2013.
[36] Y. Wen, M. Jiang, C.L. Kitchens, and G. Chumanov, “Synthesis of carbon nanofibers via hydrothermal conversion of cellulose nanocrystals”, Cellulose, vol. 24, no. 11, pp. 4599-4604, 2017.
[37] I. Alghoraibi and S. Alomari, “Different methods for nanofiber designs and fabricationˮ, In: Handbook of Nanofibers, Springer International Publishing AG, 2018.
[38] M. Khamforoush and T. Asgari, “A modified electro-centrifugal spinning method to enhance the production rate of highly aligned nanofiber”, Nano, vol. 10, no. 2, pp. 1550016, 2015.
[39] F. Dabirian, S. Sarkeshik, and A. Kianiha, “Production of uniaxially aligned nanofibers using a modified electrospinning method: rotating jet”, Curr. Nanosci., vol. 5, no. 3, pp. 318-323, 2009.
[40] M. Khamforoush and M. Mahjob, “Modification of the rotating jet method to generate highly aligned electrospun nanofibers”, Mater. Lett., vol. 65, no. 3, pp. 453-455, 2011.
[41] M. Khamforoush, T. Hatami, M. Mahjob, F. Dabirian, and A. Zandi, “Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment”, Iran. Polym. J., vol. 23, pp. 569-580, 2014.
[42] S.H. Wu and X.H. Qin, “Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method”, Mater. Lett., vol. 106, pp. 204-207, 2013.
[43] C.J. Luo, S.D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, “Electrospinning versus fibre production methods: from specifics to technological convergence”, Chem. Soc. Rev., vol. 41, no. 13, pp. 4708-4735, 2012.
[44] F. Dabirian, S.A. Hosseini Ravandi, and A.R. Pishevar, “Investigation of parameters affecting pan nanofiber production using electrical and centrifugal forces as a novel method”, Curr. Nanosci., vol. 6, no. 5, pp. 545-552, 2010.
[45] F. Dabirian, S.A. Hosseini Ravandi, A.R. Pishevar, and R.A. Abuzade, “A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems”, J. Electros., vol. 69, no. pp. 540-546, 2011.
[46] M. Khamforoush, T. Asgari, T. Hatami, and F. Dabirian, “The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated byelectrocentrifugal spinning method: modeling and optimization by response surface methodology”, Korean J. Chem. Eng., vol. 31, no. 9, pp. 1695-1706, 2014.
[47] N. Tucker, J.J. Stanger, M.P. Staiger, H. Razzaq, and K. Hofman, “The history of the science and technology of electrospinning from 1600 to 1995”, J. Eng. Fiber. Fabr., vol. 7, no. 2, pp. 1-11, 2012.
[48] D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Adv. Mater., vol 16, no. 14, pp. 1151-1170, 2004.
[49] S.R. Merritt, A.A. Exner, Z. Lee, and H.A. Recum, “Electrospinning and imaging”, Adv. Eng. Mater., vol. 14, no. 5, pp. B266-276, 2011.
[50] A.J. Robinson, A. Pérez-Nava, S.C. Ali, J. Campos, J.L. Holloway, and E.M. Cosgriff-Hernandez, “Review on comparative analysis of fiber alignment methods in electrospinning”, Matter, vol. 4, no. 3, pp. 821-844, 2021.
[51] S.L. Liu, Y.Z. Long, Z.H. Zhang, H.D. Zhang, B. Sun, J.C. Zhang, W.P. Ha, “Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning”, J. Nanomater., vol. 2013, pp. 1-12, 2013.
[52] R.-X. CHEN, Y. Li, and J.-H. HE, “Mini-review on Bubbfil spinning process for mass-production of nanofibers”, Matéria (Rio de Janeiro), vol. 19, no. 4, pp. 325-343, 2014.
[53] J. Penide, F. Quintero, J. del Val, R. Comesana, F. Lusquinos, A. Riveiro, and J. Pou, “Laser spinning: a new technique for nanofiber production”, Phys. Procedia, vol. 56, pp. 365-370, 2014.
[54] O. Jirask, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, A Method of Nanofibers Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method, Patent Cooperation Treaty WO, 2005/024101, 2005.
[55] Y. Liu, X. Zhang, Y. Xia, and H. Yang, “Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers”, Adv. Mater., vol. 22, no. 22, pp. 2454-2457, 2010.
[56] H. Xu, H. Chen, X. Li, C. Liu, and B. Yang, “A comparative study of jet formation in nozzle-and nozzle-less centrifugal spinning systems”, J. Polym. Sci. Part B: Polym. Phys., vol. 52, no. 23, pp. 1547-1559, 2014.
[57] X. Zhang and Y. Lu, “Centrifugal spinning: an alternative approach to fabricate nano fibers at high speed and low cost”, Polym. Rev., vol. 54, pp. 677-701, 2014.
[58] M.R. Badrossamay, H.A. McIlwee, J.A. Goss, and K.K. Parker, “Nanofiber assembly by rotary jet-spinning”, Nano Lett., vol. 10, no. 6, pp. 2255-2261, 2010.
[59] K. Lozano and S. Kamalaksha, Superfine Fiber Creating Spinneret and Uses Thereof, U.S. Patent 8, 231, 378, 2012.
[60] J.J. Rogalski, C.W.M. Bastiaansen, and T. Peijs, “Rotary jet spinning review–a potential high yield future for polymer nanofibers”, Nanocomposites, vol. 3, no. 4, pp. 97-121, 2017.
[61] E. Stojanovska, E. Canbay, E.S. Pampal, M.D. Calisir, O. Agma, Y. Polat, R. Simsek, N.A. S. Gundogdu, Y. Akgul, and A. Kilic, “A review on non-electro nanofibre spinning techniques”, RSC Adv., vol. 87, pp. 1-14, 2016.
[62] P. Mellado, H.A. McIlwee, M.R. Badrossamay, J.A. Goss, L. Mahadevan, and K.K. Parker, “A simple model for nanofiber formation by rotary jet-spinning”, Appl. Phys. Lett., vol. 99, no. 20, pp. 203107, 2011.
[63] L. Ren, R. Ozisik, S.P. Kotha, and P.T. Underhill, “Highly efficient fabrication of polymer nanofiber assembly by centrifugal jet spinning: process and characterization”, Macromolecules, vol. 48, no. 8, pp. 2593-2602, 2015.
[64] L. Wang, J. Shi, L. Liu, E. Secret, and Y. Chen, “Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies”, Microelectron. Eng., vol. 88, no. 8, pp. 1718-1721, 2011.
[65] Z. Zhang and J. Sun, “Research on the development of the centrifugal spinningˮ, Matec Web Conf., vol. 95, 2017. doi: 10.1051/matecconf/20179507003
[66] L. Ren and S.P. Kotha, “Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nano fibers”, Mater. Lett., vol. 117, pp. 153-157, 2014.
[67] S.M. Taghavi and R.G. Larson, “Regularized thin fiber model for nanofiber formation by centrifugal spinning”, Phys. Rev. E Stat. Nonlin Soft Matter Phys., vol. 89, no. 2, pp. 23011, 2014.
[68] S. Padron, A. Fuentes, D. Caruntu, and K. Lozano, “Experimental study of nanofiber production through force spinning”, J. Appl. Phys., vol. 113, no. 2, pp. 24318, 2013.
[69] R.T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, and K. Kern, “polymer nanofibers via nozzle-free centrifugal spinning”, Nano Lett., vol. 8, pp. 1187-1191, 2008.
[70] L.A. Mary, T. Senthilram, S. Suganya, L. Nagarajan, J. Venugopal, S. Ramakrishna, and V.R.G. Dev, “Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle”, eXPRESS Polym. Lett., vol. 7, pp. 238-248, 2013.[71] Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, and X. Zhang, “Parameter study and characterization for poly acrylonitrile Nano fibers fabricated via centrifugal spinning process”, Eur. Polym. J., vol. 49, pp. 3834, 2013.
[72] S. Mahalingam and M. Edirisinghe, “Forming of polymer nano fibers by a pressurised gyration process”, Marcomol. Rapid Comm., vol. 34, no. 14, pp. 1134-1139, 2013.
[73] A. Haidar, S. Haidar, and I.-K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology”, Arab. J. Chem., vol. 11, pp. 1165, 2018.
[74] Y. Lu, K. Fu, S. Zhang, Y. Li, C. Chen, J. Zhu, M. Yanilmaz, M. Dirican, and X. Zhang, “Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors”, J. Pow. Sources, vol. 273, pp. 502-510, 2015.
[75] N.E. Zander, “Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning”, J. Appl. Polym. Sci., vol. 132, no. 2, 2015.
[76] X. Li, H. Liu, and J. Wang, “Preparation and characterization of poly(ɛ-caprolactone) nonwoven mats via melt electrospinning”, Polymer, vol. 53, pp. 248, 2012.
[77] J.J. Rogalski, C.W.M. Bastiaansen, and T. Peijs, “PA6 nanofibre production: a comparsion between rotary jet spinning and electrospinning”, Fibers, vol. 6, no. 37, pp. 1-13, 2018.
[78] S. Marano, S.A. Barker, B.T. Raimi-Abraham, S. Missaghi, A. Rajabi-Siahboomi, and D.Q.M. Craig, “Development of micro fibrous solid dispersions of poorly water soluble drugs in sucrose using temperature controlled centrifugal spinning”, Eur. J. Pharm. Biopharm., vol. 103, pp. 84-94, 2016.
[79] X. Li, H. Chen, and B. Yang, “Centrifugally spun starch-based fibers from amylopectin rich starches”, Carbohydr. Polym., vol. 137, pp. 459-465, 2016.
[80] G.H. Kim, Y.S. Cho, and W.D. Kim, “Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode”, Eur. Polym. J., vol. 42, no. 9, pp. 2031-2038, 2006.
[81] Y. Srivastava, M. Marquez, and T. Thorsen, “Multi jet electrospinning of conducting nanofibers from microfluidic manifolds”, J. Appl. Polym. Sci., vol. 106, no. 5, pp. 3171-3178, 2007.
[82] C.T. Peterson, Hybrid Nanomanufacturing Process for High-Rate Polymer Nanober Production, University of Nebraska, Lincoln, 2010. https://digitalcommons.unl.edu/engmechdiss/15/
[83] A. Valipouri, S.A. Hosseini Ravandi, and A.R. Pishevar, “A novel method for manufacturing nanofibers”, Fiber. Polym., vol. 14, pp. 941-949, 2013.
[84] B. Lu, Y. Wang, Y. Liu, H. Duan, J. Zhou, Z. Zhang, Y. Wang, X. Li, W. Wang, W. Lan, and E. Xie, “Superhigh-throughput needleless electrospinning using a rotary cone as spinneret”, Small, vol. 6, no. 15, pp. 1612-1616, 2010.
[85] D.H. Reneker and A.L. Yarin, “Electrospinning jets and polymer nanofibers”, Polymer, vol. 49, pp. 2387-2425, 2008.
[86] T. Han, D.H. Reneker, and A.L. Yarin, “Buckling of jets in electrospinningˮ, Polymer, vol. 48, no. 20, pp. 6064-6076, 2007.
[87] T. Senthilram, L.A. Mary, J.R. Venugopal, L. Nagarajan, S. Ramakrishna, and V.R.G. Dev, “Self crimped and aligned fibers”, Method. Mater., vol. 14, no. 5, pp. 226-229, 2011.
[88] F. Dabirian, S.A. Hosseini Ravandi, and A.R. Pishevar, “The effects of operating parameters on the fabrication of poly acrylonitrile nano fibers in electro centrifuge spinning”, Fiber. Polym., vol. 14, pp. 1497-1504, 2013.
[89] H. Hosseinian, A. Valipouri, S.A. Hosseini Ravandi, and A. Alirezazadeh, “Determining the effect of centrifugal and electrical forces on the jet behaviors, the nanofiber structure, and morphology”, Polym. Adv. Technol., vol. 30, no. 4, pp. 941-950, 2018,
[90] M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers”, Polymer, vol. 43, pp. 3303, 2002.
[91] A.K. Haghi and M. Akbari, “Trends in electrospinning of natural nanofibers”, Phys. Status Solidi, vol. 204, pp. 1830-1834, 2007.
[92] S.A. Theron, E. Zussman, and A.L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions”, Polymer, vol. 45, pp. 2017-2030, 2004.
[93] A.R. Hashemi, A.R. Pishevar, A. Valipouri, and E.I. Părău, “Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning”, Phys. Fluids, vol. 30, pp. 017103, 2018.
[94] J.M. Deitzel, J. Kleinmeyer, D. Harris, and N.C.B. Tan, “The effect of processing variables on the morphology of electrospun nano fibers and textiles”, Polymer, vol. 42, pp. 261-272, 2001.
[95] R. Jalili, S.A. Hosseini, and M. Morshed, “The effects of operating parameters on the morphology of electrospun polyacrilonitrile nanofibres”, Iran. Polym. J., vol. 14, pp. 1074-1081, 2005.