َArticles are OPEN Access and publication is free of charge

Document Type : Original Article


Department of Art and Architectural, Yazd Branch, Islamic Azad University, Yazd, Iran.


Preparation of durable cotton fabrics with multifunctional properties has been lately the center of researchers’ attention and also utilizing nanoparticles is an effective strategy to gain this target. Here, acid cellulase enzyme in ultrasonic bath and nano-TiO2 sonoloading were utilized on cotton fabric to obtain self-cleaning, antifungal, protection against ultra-violet and x-linking features on fabric. Also, statistical design of D-optimal was applied for variables of time, temperature, acid cellulase, and TiO2 nanoparticles concentrations in ultrasonic bath. Laundering durability was measured for prepared cotton samples and discussed in optimized conditions using response surface methodology. Also, reflectance spectra analyses (200-400 nm), scanning electron microscopy, and energy-dispersive X-ray (EDX) were employed to confirm TiO2 nanoparticles presence on treated cotton surfaces. The research results reveal that durable multifunctional properties including color difference amounts (24.09), antifungal activity against Candida albicans (98.51%), ultra-violet protection factor (45.13), and dry crease recovery angle (256.3°) are significantly high at optimized condition (cellulase enzyme: 1.32%, Temperature: 60 °C, Time: 31.1 min, TiO2 nanoparticles: 1.07%) as compared with blank sample. 


[1] N. Arivithamani and V.R.G. Dev, “Cationization of cotton for industrial scale salt-free reactive dyeing of garments”, Clean. Technol. Envir., vol. 19, no. 9, pp. 2317-2326, 2017. [2] M. Mahbubul Bashar and M.A. Khan, “An overview on surface modification of cotton fiber for apparel use”, J. Polym. Environ., vol. 21, no. 1, pp. 181–190, 2013.  [3] W. Schnitzhofer, A. Kandelbauer, B. Klug-Santner, M. Onos, M. Calafell, and G.M. Guebitz, “Production of cellulase-free polygalacturonase preparation by sclerotium rolfsii for bioscouring of cotton”, J. Nat. Fibers, vol. 3, no. 2-3, pp.19-38, 2006. [4] V.G. Yachmenev, T. Calamari Jr, and A.H. Lambert, “The effects of ultrasound on the performance of industrial enzymes used in cotton bio-preparation/biofinishing applications”, J. Nat. Fibers, vol. 3, no. 2-3, pp. 99-112, 2006. [5] J. Jayapriya and C. Vigneswaran, “Process optimization for biosoftening of lignocellulosic fiber with white rot fungi and specific enzymatic systems”, J. Nat. Fibers,  vol. 7, no. 1, pp. 17-33, 2010. 
[6] D. Biswas, S.K. Chakrabarti, S. De, and R. Paral, “Ecofriendly degumming technology for ramie fiber”, J. Nat. Fibers, vol. 13, no. 2, pp. 227-237, 2016.  [7] D. Fakin, V. Golob, K.S. Kleinschenk, and A.M.L. Marechal, “Sorption properties of flax fibers depending on pretreatment processes and their environmental impact”, Text. Res. J., vol. 76, no. 6, pp. 448-454, 2006. [8] T. Harifi and M. Montazer, “Application of sonochemical technique for sustainable surface modification of polyester fibers resulting in durable nano-sonofinishing”, Ultrason. Sonochem., vol. 37, pp.158-168, 2017.  [9] M. Ghahremani-Honarvar and M. Latifi, “Overview of wearable electronics and smart textiles”, J. Text. I., vol. 108, no. 4, pp. 631-652, 2017. [10] V. Sivakumar and P.G. Rao, “Application of power ultrasound in leather processing: an eco-friendly approach”, J. Clean. Prod., vol. 9, no. 1, pp. 25–33, 2001. [11] S. Perincek, I. Bahtiyari, A. Korlu, and K. Duran, “New techniques in cotton finishing”, Text. Res. J., vol. 79, no. 2, pp. 121–128, 2009. [12] J.H. Bang and K.S. Suslick, “Applications of ultrasound to the synthesis of nanostructured materials”, Adv. Mater., vol. 22, pp. 1039-1059, 2010. [13] O.E. Szabó and E. Csiszár, “The effect of lowfrequency ultrasound on the activity and efficiency of a commercial cellulase enzyme”, Carbohyd. Polym., vol. 98, no. 2, pp. 1483-1489, 2013. [14] P.B. Subhedar and P.R. Gogate, “Enhancing the activity of cellulase enzyme using ultrasonic irradiations”, J. Mol. Catal. B-Enzym., vol. 101, pp. 108-114, 2014. [15] Y.G. Adewuyi and V.G. Deshmane, “Intensification of enzymatic hydrolysis of cellulose using highfrequency ultrasound: an investigation of the effects of process parameters on glucose yield”, Energ. Fuel., vol. 29, no. 8, pp 4998–5006, 2015. [16] L.M.G. Dalagnol, V.C.C. Silveira, H.B.D. Silva, V. Manfroi, and R.C. Rodrigues, “Improvement of pectinase, xylanase and cellulase activities by ultrasound: effects on enzymes and substrates, kinetics and thermodynamic parameters”, Process Biochem., vol. 61, pp. 80–87, 2017. [17] M.R. Ladole, J.S. Mevada, and A.B. Pandit, “Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles”, Bioresour Technol., vol. 239, pp. 117–126, 2017. [18] S. Hashemizad, M. Montazer, and S.S. Mireshghi, “Sonoloading of nano-TiO2 on sono-alkali hydrolyzed polyester fabric”, J. Text. I., vol. 108, no. 1, pp. 117127, 2017. 
[19] H. Fashandi and M. Karimi, “Influence of solvent/ polymer interaction on miscibility of PMMA/PCL blend: thermal analysis approach”, J. Text. Polym., vol. 2, no. 2, pp. 71-78, 2014. [20] N.D. Tissera, R.N. Wijesena, and K.M. Nalin de Silva, “Ultrasound energy to accelerate dye uptake and dye–fiber interaction of reactive dye on knitted cotton fabric at low temperatures”, Ultrason. Sonochem., vol. 29, pp. 270-278, 2016. [21] I.M. El-Nahhal, A.A. Elmanama, N.M. El Ashgar, N. Amara, and M.M. Chehimi, “Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity”, Ultrason. Sonochem., vol. 38, pp. 478-487, 2017. [22] R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties”, Colloid. Surface B., vol. 79, no. 1, pp. 5–18, 2010.  [23] A. Grancaric and A. Tarbuk, “EDA modified PET fabric treated with activated natural zeolite nanoparticles”, Mater. Technol., vol. 24, no. 1, pp. 58–63, 2013. [24] M. Karimi and F. Asadi, “Analyzing the diffusion process for polymer solution using FTIR-ATR technique: special considerations”, J. Text. Polym., vol. 1, no. 1, pp. 1-8, 2013. [25] A.X. Fujishima and D.A. Zhang, “TiO2 photo catalysis and related surface phenomena”, Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582, 2008. [26] U. Joost, K. Juganson, M. Visnapuu, M. Mortimer, A. Kahru, E. Nõmmiste et al., “Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids”, J. Photoch. Photobio. B., vol. 142, pp.178-185, 2015. [27] A. Nazari, M. Montazer, and M. Dehghani-Zahedani, “Simultaneous dyeing and mothproofing of wool against Dermestes Maculatus with madder optimized by statistical model”, Clean. Technol. Envir., vol. 16, no. 8, pp. 1675-1686, 2014. [28] W. Nitayaphat, P. Jirawongcharoen, and T. Trijaturon, “Self-cleaning properties of silk fabrics functionalized with TiO2/SiO2 Composites”, J. Nat. Fibers, vol. 15, no. 2, pp. 262-272, 2018. [29] M. Montazer and S. Seifollahzadeh, “Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties”, Color Technol., vol. 127, no. 5, pp. 322– 327, 2011. [30] M. Yu, Z. Wang, H. Liu, S. Xie, J. Wu, H. Jiang et al., “Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized”, ACS Appl. Mater. Inter., vol. 5, no. 9, pp. 3697–3703, 2013. [31] L. Guo, X. Chen, X. Liu, W. Feng, B. Li, C. Lin et al., 
 “Surface modifications and nano-composite coatings to improve the bonding strength of titanium-porcelain”, Mater. Sci. Eng. C., vol. 61, pp.143-148, 2016. [32] E. Katouei-Zadeh, S.M. Zebarjad, and K. Janghorban, “Synthesis and enhanced visible-light activity of N-doped TiO2 nano-additives applied over cotton textiles”, J. Mater. Res. Technol., vol. 7, no. 3, pp. 204211, 2018. [33] A. Nazari, M. Montazer, M.B. Moghadam, and 
 M. Anary-Abbasinejad, “Self-cleaning properties of bleached and cationized cotton using nano-TiO2: a statistical approach”, Carbohyd. Polym., vol. 83, no. 3, 
 pp.1119–1127, 2011. [34] M. Rastgoo, M. Montazer, R.M.A. Malek, T. Harifi, and M. Mahmoudi-Rad, “Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile”, Ultrason. Sonochem., vol. 31, no. 4, pp. 257–266, 2016. [35] S. Ghayempour, M. Montazer, and M. Mahmoudi-Rad, 
 “Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties”, Carbohyd. Polym., vol. 136, pp. 232–241, 2016. [36] T. Harifi and M. Montazer, “Photo, bio, and magnetoactive colored polyester fabric with hydrophobic/ hydrophilic and enhanced mechanical properties through synthesis of TiO2/Fe3O4/Ag nanocomposite”, Ind. Eng. Chem. Res., vol. 53, no. 3, pp. 1119–1129, 2014. [37] M. Shateri-Khalilabad and M.E. Yazdanshenas, “Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection”, Text. Res. J., vol. 83, no. 10, pp. 9931004, 2013. [38] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M. Anary-Abbasinejad, “NanoTiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with polycarboxylic acids under UV and high temperature”, Appl. Catal. A-Gen., vol. 371, no. 1-2, pp.10–16, 2009. [39] N.A. Ibrahim, K. EL-Badry, B.M. Eid, and T.M. Hassan, “A new approach for biofinishing of cellulosecontaining fabrics using acid cellulases”, Carbohyd. 
Polym., vol. 83, no. 1, pp. 116–121, 2011.   [40] C.A. Kumamoto, “Candida biofilms”, Curr. Opin. Microbiol., vol. 5, no. 6, pp. 608–611, 2002. [41] R.M. Donlan, “Biofilm formation: a clinically relevant microbiological process”, Clin. Infect. Dis., vol. 33, no. 8, pp.1387–1392, 2001. [42] E.P. Rustchenko-Bulgac, “Variations of candida albicans electrophoretic karyotypes”, J. Bacteriol., vol. 173, no. 20, pp. 6586–6596, 1991. [43] A.R. Holmes, S. Tsao, S.W. Ong, E. Lamping, K. Niimi, B.C. Monk et al., “Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2”, Mol. Microbiol., vol. 62, no. 1, pp. 170–186, 2006. [44] T. Jones, N.A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B.B. Magee et al., “The diploid genome sequence of Candida albicans”, Proc. Natl. Acad. Sci. USA, vol. 101, no. 19, pp. 7329–7334, 2004. [45] E. Beltrán-Partida, B. Valdez-Salas, M. CurielÁlvarez, S. Castillo-Uribe, A. Escamilla, and N. Nedev, “Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds”, Mater. Sci. Eng. C., vol. 76, pp. 59-65, 2017. [46] Ş.S. Uğur, M. Sarııšık, and A.H. Aktaş, “Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection”, Fiber. Polym., vol. 12, no. 2, pp. 190– 196, 2011.   [47] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M. Anary-Abbasinejad, “NanoTiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with polycarboxylic acids under UV and high temperature”, Appl. Catal. A-Gen., vol. 371, no. 1-2, pp. 10–16, 2009. [48] A. Nazari, M. Montazer, A. Rashidi, M.E. Yazdanshenas, and M.B. Moghadam, “Optimization of cotton crosslinking with polycarboxylic acids and nano-TiO2 using central composite design”, J. Appl. Polym. Sci., vol. 117, no. 5, pp. 2740–2748, 2010. [49] A. Haji, M. Nasiriboroumand, and S.S. Qavamnia, “Cotton dyeing and antibacterial finishing using agricultural waste by an eco-friendly process optimized by response surface methodology”, Fiber. Polym., vol. 19, no. 11, 2359-2364, 2018. [50] A. Haji, “Improved natural dyeing of cotton by plasma treatment and chitosan coating. Optimization by response surface methodology”, Cell. Chem. Technol., vol. 51, no. 9-10, pp. 975-982, 2017. [51] A. Haji, A. Mousavi-Shoushtari, F. Mazaheri, and S.E. Tabatabaeyan, “RSM optimized self-cleaning nanofinishing on polyester/wool fabric pretreated with oxygen plasma”, J. Text. I., vol. 107, no. 8, pp. 985994, 2016. [52] A. Haji, S.S. Qavamnia, and M. Nasiriboroumand, “The use of D-optimal design in optimization of wool dyeing with Juglans regia bark”, Ind. Textila, vol. 69, no. 2, pp. 104-110, 2018.
[53] A. Haji, A. Mousavi-Shoushtari, and M. Abdouss, “RSM optimization of plasma initiated grafting of acrylic acid onto polypropylene nonwoven”, J. Macromol. Sci. A., vol. 51, no. 1, pp. 76–87, 2014.