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Performances of Classic and Weighted Versions of Some
Selected Methods in Estimation of Spectral Data from
Camera Responses

Abolfazl Aghanouri, Niloofar Eslahi and Vahid Babaei

Abstract—The reconstruction of spectral reflectances of
different color charts from the corresponding RGB values is
investigated. The pseudo inverse (PI), principal component
analysis (PCA) and canonical correlation regression (CCR) as
well as their weighted versions are employed to estimate the
spectral reflectances of Kodak Q_60, Color checker SG and
Munsell data sets from the responses of a digital camera
which are contaminated with different levels of random and
quantization noises.The root mean square (RMS) error
between the reconstructed and actual reflectances as well as
the CIELAB color difference values under illuminant A for
CIE1964 standard observer are computed to evaluate the
performances of the employed techniques. Two different
modes of camera responses i.e. three and six channels types
are considered. In addition, the responses of a three-channel
camera are computed under two sets of illumination
conditions to prepare two collections of RGB data. To analyze
the performances of the methods, they are also evaluated in
the cross media condition, i.e. using different training and
testing packages. According to the results, the wPI method,
which is the simplest method among the other spectral
reconstruction techniques, shows the greatest robustness at
different levels of quantization and random noises.

Key words: Spectral reconstruction, pseudo inverse (PI),
principal component analysis (PCA), canonical correlation
regression (CCR), weighted methods, robustness.

I. INTRODUCTION

IGITAL imaging devices such as digital cameras and

scanners have undergone significant progress in their
technology during the recent decades. Today, these modern
image capturing devices are widely used as low cost color
measuring device in various applications. Nevertheless, the
colorimetric output values of these devices are involved
with noise in different types and levels. A digital image is
subjected to several types of noise sources, that could be
fixed, temporal as well as temperature dependent. Noise
components can be classified in different ways. One of the
most significant noise components is the random noise.
Random components include photon shot, reset and
thermal noise. The other important noise is quantization
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noise caused by analogue to digital (A/D) conversion [1].

While the multispectral image capturing devices use
between 3 and 10 optical sensors, the hyper spectral
cameras contain as many as 200 (or more) contiguous
spectral bands and measure the spectrum for each pixel.
The measurement bands of such devices usually extend to
invisible spectra of the electromagnetic spectrum, i.e. near
infrared and and/or ultraviolet regions [2-6]. Since such
devices are still expensive and mostly unavailable, the
estimation of spectral data from the camera outputs with
limited numbers of channels, e.g. RGB outputs of
conventional 3 CCD cameras, has been very attractive
subject within the recent years. Through such estimation
method, a 3 to 6 device-dependent low dimensional data
(such as RGB colorimetric data in a three-channel camera)
is converted to device-independent spectral data (like 31
spectral information) by implementation of suitable
mathematical and statistical methods. Several methods e.g.
pseudo inverse (PI) [7,8], principal component analysis
(PCA) [9,10], canonical correlation regression (CCR) [11],
independent component analysis (ICA) [12,13]. Fourier
bases [14], wavelet bases [15], Gaussian primaries [14],
Wiener approach [16-18], matrix R [5], neural network
[4,19] and interpolation techniques [4,20] have been
introduced to optimize such one to many problems.
Besides, the weighted versions of these techniques [21-23]
were introduced as improvement to the classical techniques
[24,25]. Tt is a fact that the methods were mostly employed
on the XYZ colorimetric data while the RGB information
which could be treated with different types of noises has
not been considered seriously. Obviously, the awareness of
the efficiency of the recovery methods in presence of
random and quantization noises could play a significant
role in selection of the suitable technique.

In this study, the performances of three prevalent
methods in the estimation of spectral data from
colorimetric information, i.e. PI, PCA and CCR and their
weighted version are compared. The methods are
implemented for the recovery of spectral reflectances of
different color sets from their corresponding RGB values
while they are contaminated with different levels of
random and quantization noises. Besides, different training
and testing sets are applied to simulate more realistic
conditions. Root mean square (RMS) error of the
difference between the reconstructed and actual reflectance
as well as the CIELAB color difference values under
illuminant A for CIE1964 standard observer are reported
for the evaluation of the performances of the employed



JOURNAL OF TEXTILES AND POLYMERS, VOL. 1, NO. 1, JANUARY 2013

methods.

II. EXPERIMENTS

The reflectance spectra of Kodak Q_60, Color checker
SG (CCSG) and the 1269 chips in the Munsell Book of
Color Munsell Matt Finish Collection were used to
calculate the RGB responses of digital camera. The Gretag
Macbeth Eye-One Pro was employed for reflectance
measurements of the Kodak Q_60 color samples. The
spectra of Munsell color chips that were measured with a
Perkin Elmer Lambda 18 spectrophotometer borrowed
from Reference [26]. Besides, the reflectance spectra of
140 samples of Color checker SG were measured by using
a Gretag Macbeth Color Eye 7000A spectrophotometer
with d/8 geometry. Prior to any calculation, the reflectance
data were fixed between 400 to 700 nm at 10 nm intervals.

III. COMPUTATION OF CAMERA RESPONSES

The specimens of each datasets were divided into two
groups, i.e. odd and even samples. The odd samples were
chosen as training data and used for extracting the
eigenvectors, while the even samples were employed for
testing purposes. The spectral sensitivities of three and six
channels of a typical camera reported by Connah et al.
[271, were used to calculate the RGB values of the samples
from their corresponding reflectance under illuminant D65.
Figure 1 shows the employed spectral sensitivities of
desired cameras.

Eq. (1) was used to compute the camera responses for
each sample.

700
0;= XR;Si1Ey, )
A=400

where O; is the camera responses of each channel i. R, ,
S;; and E, respectively indicate the spectral reflectance

of the sample, the spectral sensitivity of the ith camera
channel, and the spectral power distribution of the light
source. To encounter the random and quantization noise
effects, the computed camera outputs were subjected to the
desired level of proposed noise. In this study, three
different levels of quantization noise were implemented in

the range of i% LSB (least square bit) i.e. 4, 6, and 8 bit

quantization levels. Moreover, random noise was added as
a small random value which distributed normally with the
zero mean and a variable standard deviation (SD) at four
levels of 0.00625, 0.0125, 0.025, and 0.05 SD. According
to Connah et al. [28], reconstruction error increases with
increasing the SD of random noise.

Cameras with two different sets of detectors, i.e. the 3
and 6 channels, were examined. In order to calculate the
camera responses for each dataset, spectral sensitivities of
3 and 6 channels were respectively implemented. Due to
the fact that calculation of spectral sensitivities of six
channels needs multispectral cameras which aren’t always
accessible, we made use of two different illuminants, i.e.
D65 and A, to provide a 6 channels outputs from a 3
channels camera. In fact, two sets of RGB values (camera
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responses) were calculated under two different illuminants
and the collected responses were combined to produce 6
channels outputs. Finally, the cross training procedure was
also tried. In other words, Munsell dataset was used as the
training package and the other datasets were considered as
testing samples which were contaminated with different
types and levels of noise.

Spectral Sensitivity
R 888 5R &

§
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3
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Fig. 1. The spectral sensitivities of three (a) and six (b) channels cameras
[27].

IV. EMPLOYED REFLECTANCE RECOVERY METHODS

A. PI and wPI

In this study, the pseudo inverse technique was chosen
to evaluate and compare its noise robustness with other
common methods i.e. PCA and CCR techniques. Eq. (1)
can be rewritten in the matrix form as Eq. (2):
0=ATR, )
where O denotes camera responses of sample, A is the
projected matrix obtained from standard illuminant and
spectral sensitivity of camera channels, the superscript T
stands for matrix transpose and Ris the reflectance
spectrum of the surface [7]. Therefore, for a given set of
camera responses O, the unknown reflectance R can be

simply computed by inversion of matrix AT . Since A is
not a square matrix, the matrix inverse would not be
possible and the pseudo inverse matrix should be
employed. In this method, a transformation matrix, M,
maps the colorimetric values (RGB in the case of three
channels camera) to corresponding spectral reflectance
which is provided by Eq. (3):
R=MO. 3)
A set of calibration collections with given colorimetric
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and spectral properties were used to optimize matrix M.
As expected, O is not a square matrix and the generalized
inverse is required:

M =Rpinv(0), )
where, pinV(O) is the Moore-Penrose pseudo inverse of

matrix O and derived by minimizing the least-square error
of the difference between the original reflectance and the
estimated one [29]:

pinv(0) =07 (00" ], ®)
While the standard pseudo inverse method considers
equal weights for all spectral data in the main dataset, the
method proposed by Babaei ez al. [23] selectively controls
the influence of the reflectance data in the estimated
spectrum in the weighted PI (abbreviated by wPI) method.
In fact, the wPI method weighs the attending samples in
the database according to their color difference values
from the proposed sample. So, the wPI method was
employed in this study and compared to the other recovery

techniques. For a given dataset R, the weights were
introduced in a diagonal matrix W as:

w, 0 -« 0
0 w, 0

W= . , 6
0 .0 &)
0 - 0 w,

where, w; refers to RGB color difference values between
the samples in the dataset and the sample whose

reconstruction was aimed.

- ! %

VAR,V +(aG,) + (aB, )
So, by adding W in Eq. (3) Mcould be achieved by
Eq. (8).
M = RWpin{OW) ®

B. PCA and wPCA
Many multi spectral imaging techniques utilize the
inherent  smoothness of reflectance spectra by
implementation of low dimensional linear models. Thus,
the reflectance spectra, R, , sampled at k equal intervals
of wavelength A may be approximated by a weighted sum
of m basic functions B, ; with i€ 1...m, where m<k, so
that in matrix notation:
R, =B, V. ®
Therefore, at 10 nm intervals between 400 and 700 nm,
R, isa 31Xn matrix of reflectance values of n samples,
V is a mxn matrix of weights, and B;, is a 31xm

matrix of basis functions were column i contains the ith
basis function B;, . Column j of matrix V contains m

scalars that provide an efficient representation of the jth

reflectance spectrum. The method proposed by Maloney
and Wandell [30] assumes a linear camera model
represented by

C=M'R, (10
where, C is a matrix of camera responses and matrix M
contains wavelength-by-wavelength product of the total
spectral sensitivity of the camera and the spectral power
distribution of employed light source. If the linear model
representation of reflectance is substituted into Eq. (10),
then

C=AV, (11)

where, matrix A represents the product of M'B. The
surface reflectance factor may be recovered by Eq. (12):

V=A"C, (12)
where A* denotes the pseudo inverse of the matrix A that
is known if the spectral sensitivities of the camera’s
channels, the spectral power distribution of the applied
illuminant, and the spectral properties of the basic
functions are all known. Once the weighted matrix V is
computed, it is then easy to compute the reflectance
spectra from Eq. (9).

According to the study by Agahian et al. [21], to extract
the principal axes that maximize the weighted variance of
the projected data in the eigenvector subspace, the data
matrix R was multiplied with the weighting diagonal
matrix W (Eq. 6) and then, the eigenvector analysis is
performed on the weighted covariance matrix.

R=WR".
C. CCR and wCCR

Canonical correlation analysis was developed by
Hotelling [31] as a method of measuring the linear
relationship between two multidimensional variables. This
technique seeks to identify and quantify two bases, one for
each variable, that are optimal with respect to correlation
[32]. In fact, it focuses on the correlation between linear
combinations of two sets of variables instead of one in
PCA.

In the spectral reflectance recovery, two sets of variables
X and Y which respectively represent RGB responses of
digital cameras and reflectance data of a set of colored
samples could be considered [11]. X and Y are
respectively nxp and nxq matrices where n refers to the
number of specimens and p and q show the number of
color coordinates and wavelengths, respectively. The
covariance matrix of both datasets could be simply
determined by:

Cov(X)=3,, »
Cov(Y)=3,, ,
Cov(X,Y)= IR
As mentioned earlier, the CCA finds two sets of basis
vectors, one for X and the other for Y, such that the
correlations between the projections of the variables onto
these basis vectors are mutually maximized. Clearly, in the
case of spectral and colorimetric data, the number of
wavelengths is greater than the number of colorimetric
data (p<q), so the matrices share the same p largest

13)

(14)

eigenvalues, P12 > p% 22 pﬁ . Canonical correlation
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analysis seeks matrices A and B such that the variables U
and A\ maximize the correlation
Cov(U,V)

JVar(U)Var(V)

matrices A and B, two sets of canonical variables could be
created as:

U=XxA=XY;"?E, (15)
V=YxB=YY,'"’F, (16)

while, E and F are the eigenvectors of the matrices
-1/2 -1 -1/2
1 X X2z 2o 2n

Y52 Yo T X 542 | respectively. These two

eigenvectors are the normalized canonical correlation basis
vectors.

In the reconstruction of reflectance data from the RGB
values, matrix X (colorimetric data) is known and the
coefficient matrices A and B as well as the canonical
correlations between X and Y, i.e. pcould be calculated.

p =corr(U,V) = So, for coefficient

and

Hence, the reflectance data of sample (Ymp) which its
RGB values (Xamp) is known could be easily calculated
from estimated canonical variables:

V = Uy X By, = Xeamp XAX B a7

where, B, is

Boc = diaglpy,pa.Pp) (18)
Finally,

Yeamp = VXB*. 19)
The “+” sign indicates the pseudo inverse of the

proposed matrix. The mathematics of classical canonical
correlation analysis has been fully described by Johnson
and Wichern [33] and its application in spectral
reconstruction was discussed by Zhao et al. [11] and Eslahi
et al. [22].

In the standard CCR method all spectral and
colorimetric data have equal influence on the
reconstruction of spectral reflectances. So, in order to
selectively control the influence of the data in the recovery
process, both spectral and RGB values of samples
attending in the database have been weighted by the
inverse of distances of samples in the dataset and the
proposed sample in RGB space, i.e. Eq. (7), prior to
extraction of canonical terms. In this case, the inputs data,
specifically X and Y, change to new variables i.e. Xw and
Yw by:

Xy =WxX, (20)
Yy = WXY. @21

Then, the classical canonical correlation regression
could be employed on two sets of weighted variables
shown by Xy and Y.

V. RESULTS AND DISCUSSIONS

In this study, the performances of PI, PCA and CCR
methods and the corresponding weighted version in the
estimation of spectral reflectances of samples from their

12

colorimetric RGB data were examined and compared with
each other. Two different levels of colorimetric data were
prepared. In fact, the colorimetric data were gathered using
3 and 6-channel cameras. In case of 6-channel camera, two
sets of RGB values were used for calculating the weighting
matrix in Eq. (7). Besides, in 2-illuminant mode, a three-
channel camera was used while the RGB data were
collected under two sets of light sources. To investigate the
effect of sample type in the training and testing stages, the
cross testing-training mode was also examined and the
results were compared when identical color set was used in
the training and estimation sequences.

A. 3-channel mode

In this case, the spectral sensitivities of 3 channels of the
camera were employed to compute the camera responses
for each dataset. The results of estimation of the spectral
reflectances of the Munsell, Kodak and CCSG datasets
under different levels of quantization and random noises
by aforementioned techniques are summarized in Tables I
and II. The spectral and colorimetric accuracies of methods
were quantified by the calculation of root mean square
(RMS) error of the difference between the actual and the
estimated spectra as well as the mean of color difference
values under illuminant A for CIE1964 standard observer.

As Table I shows, in the absence of any noise, the PI
method achieved the best result for all datasets, but the
modified version of PCA, i.e. wPCA, led to better result
for Munsell package. On the other hand, the weighted
versions far surpassed the classic versions, especially in the
Kodak dataset whose RMS error decreased from 4.17 to
0.71 by wPCA technique. Also, the weighted versions led
to better reconstruction even in the high levels of
quantization and random noises in comparison with the
classical methods.

However, the PCA and wPCA techniques presented
some sort of weakness in comparison to the other
implemented methods for the all datasets, especially at
high noise levels, such as highest level of random noise
(SD=0.05). On the other hand, the wPI and wCCR
methods achieved better results even at different types and
levels of noise. It means that, these methods are more
robust against noise for different datasets with different
spectral and colorimetric characteristics. Among the
applied datasets, Kodak chart fulfilled better results using
the weighted versions in comparison to the Munsell and
CCSG databases.

Table III provides the cumulative variance of the
Munsell, CCSG and Kodak packages. According to this
table, the Kodak chart represents higher cumulative
variance which indicates more similarity between the
samples. This finding agrees with the fact that the Kodak
chart is prepared from a three CMY primaries while the
other packages comprise several primaries. Hence, the
reconstruction of the spectral reflectances of the samples of
this group from the limited number of information, i.e. the
RGB values could be more appropriate.
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THE MEAN OF RMS (%) ERROR OF SPECTRAL REFLECTANCE RECONSTRUCTION OF MUNSELL, KODAK AND CCSG DATASETS UNDER DIFFERENT LEVELS OF

QUANTIZATION AND RANDOM NOISES FOR 3 AND 6-CHANNEL CAMERAS AS WELL AS 2-ILLUMINANT MODE

§ % § é Munsell Kodak CCSG
z | PCA Pl CCR_wPCA wPl wCCR: PCA Pl CCR wPCA wPl WCCR | PCA Pl CCR WPCA wPl wCCR
3 3 1224 207 221 142 124 1251 447 276 421 071 058 086 1277 258 277 182 172 186
2 o 6 1 122 083 115 129 047 048 1 142 052 143 044 041 043 1536 115 13 069 062 062
2 o* E - 096 121 - 042 043 .: . 056  0.84 - 012 013 1 - 122 138 . 063 064
3 1 224 208 221 144 126 116 1 409 277 421 076 063 064 | 3.14 258 278 208 175 186
= 6 1138 102 123 167 061 062 12 066 124 043 039 04 D572 123 137 13 074 073
" ® o - 129 148 . 0.81 o.a1§ - 098 140 - 082 063 . 146 163 - 098 103
: 31235 218 23 191 147 142 ] 415 283 425 102 089 095 | 328 273 2985 237 188 198
% = 6 219 155 168 356 109 109 i 215 124 19 181 087 085 P01 174 183 438 126  1.25
‘:% e > ; . 189 2.00 - 130 127 é 167 296 = 108 1.01 ? - 200 221 - 150 153
g
¢ 3 ! 33 308 331 333 27 286 488 361 488 347 222 253 468 356 376 439 287 307
§ 6 718 262 278 1435 21 219 252 385 639 182 197 1831 305 317 1404 256 244
2 r - 275 207 - 231 238 ! 284 437 . 191 201 ' - 327 338 - 263 260
; 3 246 227 238 158 150 152 425 288 43 148 103 1.7 302 278 303 22 203 219
o ; ! .
g 6, 503 174 18 386 128 123} 279 147 231 252 102 103 ! 1275 186 207 423 128 148
¢ 21 - 200 214 - 138 135 181 325 - 120 147 - 245 244 - 179 182
3 : 297 266 278 23 21 208 E 454 321 451 189 172 179 . 348 325 341 282 238 251
2 § 6 761 227 234 596 177 168 471 208 342 45 160 155 2277 280 263 790 210 2.02
c 3 28 1 - 236 249 . 181 177 250 3.8 - 153 161 1 - 285 293 - 236 237
‘% 3 1422 397 375 386 371 349 | 545 414 51 351 306 299 |48 431 439 442 367 356
& g 6 11311 308 316 851 250 264 1 871 305 444 864 252 243 4448 351 352 1663 310 301
e o - 300 313 - 260 262 334 459 - 232 241 E - 333 372 3 293 3.1
- : |
3 1 704 567 568 694 523 524! 745 58 719 653 483 545 ! 75 618 622 728 546 546
8 6 12889 451 458 2803 412 416 | 1634 472 556 1630 398  4.47 17579 484 538 4037 461 501
° 21 - 445 48 - 414 404 | 475 562 = 356 427 1 - 506 503 - 474 480

* Number of illuminant mode

The color differences between the reconstructed and
actual spectra of different datasets by different methods are
illustrated in Table II. Results of this table are consistent
with the results of Table I. As Table II shows, the color
difference values are smaller for the PI and CCR
techniques in comparison to the PCA method. In fact, the
PCA is fundamentally different from PI and CCR methods.
Indeed, opposed to the PI and CCR techniques, the most
important directions of the spectral reflectance are
extracted and ordered by the principal components analysis
method and the colorimetric data, i.e. the RGB responses
of camera, do not affect the extracted eigenvectors. In
other words, the PCA only employs one set of variables
(spectral data) while the CCR and PI methods take the
advantage of the mutual relations between the colorimetric
and spectral data and consequently are more robust in the
presence of different types of noise. It is no doubt that the
colorimetric data have great impact on the recovery
process while they are ignored in PCA technique. So,
logically the PCA could lead to suitable results if the noise
level would be low enough.

Besides, according to the obtained results, the PI which
is the simplest method among the other spectral
reconstruction methods is more appropriate than the CCR
technique which needs more complicated computation in

the presence of noise.

B. 6-Channel mode

The responses of a 6 channel camera were computed from
the spectral sensitivities of channels to increase the
dimensional properties of the employed data. As Table I
illustrates, the accuracy of results are significantly
increased by using 6 channels responses for all datasets in
different levels of noise for CCR and PI methods and their
weighted versions. For example, in the absence of noise,
the RMS errors of the CCR method drop from 2.21, 4.21
and 2.77 (for 3-channel camera) to 1.15, 1.13 and 1.30 (for
6-channel camera) for the Munsell, Kodak and CCSG
datasets, respectively. Also, the weighted version leads to
more precise results than the classic version in absence and
presence of noise. It should be noted that the classic PCA
technique surpasses its weighted version, wPCA, for the
Munsell data set if data has been contaminated with
different levels of quantization noise. Furthermore, in the
presence of random noise, the PCA technique significantly
shows opposite behavior.
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TABLE I
THE COLORIMETRIC ACCURACY IN TERM OF MEAN OF AE A OF SPECTRAL ESTIMATION OF MUNSELL, KODAK AND CCSG DATASETS UNDER DIFFERENT LEVELS OF
QUANTIZATION AND RANDOM NOISES FOR 3 AND 6-CHANNEL CAMERAS AS WELL AS 2-ILLUMINANT MODE

3 oy
2 3 0 2 Munsell Kodak ccsG
2 [} B ¢
3 2 z 35
S z S , .
z P PCA Pl CCR WPCA wPl WCCR | PCA Pl CCR  WPCA WPl WCCR | PCA Pl CCR wPCA WPl WCCR
2 3 . 197 187 192 107 148 121 | 412 323 414 089 079 128 | 237 227 235 184 164 1.9
- ' Ll '
° o 6 | 08 072 07 117 044 039 147 065 138 014 015 013 | 850 086 088 085 051 0.0
o 3 § ' '
z 2° - o035 08 - 049 020 i - 224 065 - 171 009 i - 070 048 - 051 028
3 241 196 208 126 133 126 1 410 327 415 137 144 146 } 311 240 267 227 167 205
3 6 | 124 100 102 168 08 079 118 120 180 115 085 110 } 870 128 123 153 090 086
© H ' i
R 25 - 123 12t - 084 092} - 289 201 - 29 147 ! - 147 145 - 083 1.0
I ; : .
] 3 ! 304 293 295 223 249 258 | 454 426 500 322 275 296 | 432 374 35 331 290 2%
= L '
s % 6 | 340 245 248 496 210 215 | 544 359 424 528 258 282 1545 279 250 435 250 223
S © . . :
H 25 - 244 242 - 202 205 ! - 484 451 - ag4 259 ! - 262 238 - 217 215
g . : .
5
3 1853 720 761 860 604  7.38 |1352 1240 1323 1350 839 908 1174 578 631 1070 520 650
3 6 | 1284 628 646 2801 540 600 12311 1126 1144 2232 725 781 13942 588 585 3943 555 607
<
2 - em es7 = 585 613 | - 930 972 - 907 75 I - 480 551 - 510 599
N 3 1370 335 350 326 301 301 | 542 479 565 450 401 447 | 460 404 416 431 326 3.2
N 1 1 1
©
g 6 | 450 300 314 608 263 059 | 658 441 513 635 406 431 12073 361 370 606 310 322
o * ' ' ]
2 1 - 28 216 - 238 228 | - 524 48 - 500 330 ! - 333 340 - 275 3.58
3 1630 568 58 606 516 523 i 904 797 843 887 703 698 | 729 671 704 687 516 617
3 8 6 : 894 506 495 1203 454 432 ! 1424 752 811 1370 692 750 | 3469 582 568 1367 539 4.95
g ; : :
: s 2 - 430 448 - 398 401 | - 65 684 - 629 603 | - 498 527 - 427 535
£ ; . .
E 3 11223 1080 1036 1233 896 870 ! 17.32 1351 1239 1806 1111 10.98 ;1293 1375 1248 1262 1064 .89
= 8 6 12120 843 873 1731 748 775 ! 2665 1141 1169 2676 1005 10.87 | 5899 060 088 3084 9.16 10.36
c . . '
2 - 764 TE6 - 701 692 : - 1056 993 - 941 98 ! - 805 928 - 694 803
. , .
3 12344 1755 1673 2400 1403 1380 | 2097 2034 2043 2960 1607 17.63 |2282 17.83 1819 2331 1540 1532
] 6 | 5163 1453 1402 5318 1223 1241 1 5236 17.15  17.32 5225 1467 1547 115149 1482 17.92 79.87 14261597
o ' '
20 - 1338 1201 - 1168 1361 - 1477 1543 - 1304 1445 1 - 1401 1600 - 12271585

* Number of illuminant mode

In comparison with the 3-channel mode, the accuracy of
the spectral reconstruction decreases for 6-channel digital
camera with the increasing of noise levels. In fact, for the 6
colorimetric camera responses, 6 eigenvectors should be
employed to estimate the spectral reflectance of desired
sample. However, as shown by Hardeberg [3], the
selection of the optimum numbers of eigenvectors is a
critical issue in this aspect. In addition, when the spectra
are estimated from small numbers of channels, the
reconstruction error did not consistently fall with the
increasing of channels. In fact, when the PCA technique is
used for reconstruction of spectral data, the application of
the large numbers of eigenvectors do not grant the
achievement of better results because the eigenvectors that
have small eigenvalues could include the effect of noises
and would make the results less accurate. In other words, 6
colorimetric camera responses need 6 eigenvectors to
estimate the spectral reflectance. Obviously, the sensitivity
of this method intensifies by increasing the noise and leads
to higher RMS errors. Hence, the optimum numbers of
eigenvectors should be used for the spectral reconstruction
to achieve more accurate results in the presence of high
level noises. On the other hand, increasing the camera
responses is an advantage for the PI and CCR methods,

since these methods correlate the higher dimension
variables which could include the noise. As the results
show, RMS errors effectively decrease for these techniques
by implementing 6 colorimetric data in all types and levels
of noise. In fact, the methods are not significantly affected
by the noise type and level. Moreover, for the majority of
data at different levels and types of noise, the PI and wPI
methods surpass the CCR and wCCR techniques,
respectively.

As Table II shows, the color difference values are
smaller for PI and CCR techniques in comparison to PCA.
Obviously, these methods and their weighted versions
imply higher noise robustness, as well. In addition, similar
to spectral accuracy, the colorimetric performance of PCA
method using 6-channel camera demonstrates inferiority in
comparison to 3-channel mode particularly in high levels
of noise.

C. 2-illuminant mode

Accessing to a 6-channel camera is not always possible
and the conventional cameras are mostly 3-channel ones.
To increase the numbers of camera responses, it is possible
to capture the images under two sets of illuminations. By
this way, 2 sets of camera responses would be possible at a
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lower instrument cost. Based on Maloney-Wandell method
[30], the PCA faces with technical limitation in the
implementation of 6 colorimetric responses because the
spectral sensitivities of 6 channels are required for the
spectral reconstruction by this method, while a 3-channel
camera is used and consequently the spectral sensitivities
of them would be available. In contrast, the PI and CCR
methods do not have any operational limitations for such
type of data capturing technique.

TABLE IIT
CUMULATIVE VARIANCES OF MUNSELL, CCSG AND KODAK COLOR SETS
No. Eigenvectors CCSG Kodak Munsell
1 0.8236 0.8246 0.7670
2 0.9531 0.9527 0.9257
3 0.9900 0.9952 0.9856
4 0.9953 0.9875 0.9932
5 0.9979 0.9986 0.9968
6 0.9986 0.9995 0.9980
7 0.9992 0.9999 0.9989
8 0.9996 1 0.9993
9 0.9998 1 0.9996
10 0.9999 1 0.9998
1 0.9999 1 0.9999

12 1 1 0.9999

13 1 1 0.9999

14 1 1 1

As Tables I indicates, in absence of noise, the 2-
illuminant mode provides similar results to 6-channel
mode and in some cases, such as RMS errors of the wPI
and wCCR methods, the values of error respectively
decrease from 0.47 and 0.48 for the 6-channel mode to
0.42 and 43 for 2-illuminant mode for the Munsell
samples. Besides, as Table II shows, the color difference
values of the reconstruction of Munsell data set by the wPI
and wCCR techniques diminish from 0.44 and 0.39 (6
channels) to 0.19 and 0.20 (2 illuminants), respectively.
Moreover, in the presence of different levels and types of
noise, the 2-illuminant technique provides higher noise
robustness. Obviously, the 2-illuminant mode benefits
from practical advantages in comparison to the 6-channel
mode due to the availability and the lower cost.

D. Cross training-testing of methods

To evaluate the efficiency of the methods in the more
realistic condition, different color sets were employed in
the training and testing sequences. In fact, the Munsell
dataset was allocated as training samples and the Kodak as
well as CCSG samples were used as testing sets. Tables IV
and V demonstrate the results of the spectral estimation
obtained from the PI, PCA, CCR methods and their
weighted versions for 3 and 6 camera channels under
different levels of quantization and random noise. It should
be noted that the results of the 2-illuminant mode are not
reported here because of the large RMS errors.

As shown in Table IV, the PI and CCR techniques and

their weighted versions lead to better results by the 6-
channel mode in comparison with 3-channel camera in all
types and levels of noise. The spectral reconstruction
accuracies of the Kodak chart expose too inferior results in
comparison with self-training mode, but CCSG represents
different results. In fact, the cross training on CCSG
improves the reconstruction accuracy in some cases. For
example, according to Tables I and IV the wPCA, wPI and
wCCR respectively provide the RMS values of 22.58, 4.30
and 4.37 for the highest level of random noise (SD=0.05,
Table IV) while they lead to the values of 40.37, 4.61 and
5.01 in the self-training mode (CCSG dataset, Table I).

To analyze the results, the colorimetric specifications of
the Munsell-CCSG and Munsell-Kodak datasets under
D65 illuminant and 1964 standard observer are computed
in the CIELAB color space and shown in Figures 2 and 3,
respectively. As Figure 2 indicates, the Munsell samples
cover the majority of the CCSG specimens, whereas it
does not cover the Kodak samples in Figure 3,
appropriately. Therefore, the Munsell dataset could not be
a suitable chart to use as training set in estimation of the
Kodak set. Clearly, CCSG has greater robustness at all
types and levels of noise in contrast to Kodak in the both
cross and self-training modes. Furthermore, wPI and
wWCCR show better results among the other applied
methods.
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Fig. 2. Three and two dimensional representations of Munsell and CCSG
sets under D65 illuminant and 1964 standard observer in the CIELAB
color space.

According to Table V, in absence of any noise, the
weighted versions surpass the classic ones. Furthermore,
the colorimetric accuracies of the 6-channel mode are
higher than the 3-channel mode for the PI and CCR
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TABLEIV
THE MEAN OF THE RMS(%) ERROR FOR THE PI, PCA, CCR RECONSTRUCTION METHODS AND THEIR WEIGHTED VERSIONS UNDER DIFFERENT LEVELS OF
QUANTIZATION AND RANDOM NOISESFOR CROSS TRAINING MODE

Mode Kodak CCSG
Noise type Noise level \ .
(channel) + pcA  PI CCR WPCA wPl  WwCCR ! PCA Pl CCR WwPCA wPl wCCR
3 1 534 539 537 538 513 523 1 272 281 271 201 199 203
No noise 0 H ;
6 | 358 393 343 327 348 352 ! 139 132 124 098 08 089
H |
8 bi 3 | 534 540 537 588 513 522 ! 273 281 272 203 200 197
2 i
3 6 1 361 395 346 320 361 362 | 148 138 131 118 093 097
2
5 6 3 1538 542 539 541 519 524 | 28 297 28 220 220 215
= bit
IS 6 1 447 433 392 399 420 422 | 227 193 174 225 144 140
=
g . 3 1602 58 59 600 577 58 I 426 365 366 383 335 3.3
G bit
6 i 860 526 529 618 518 548 | 750 311 312 437 268 266
: i
3 | 543 544 543 543 519 528 | 295 303 28 230 231 220
0.00625 ' i
6 . 452 457 420 446 441 441 | 288 218 201 315 159 155
. i
3 0otz | 565 563 558 560 540 543 | 345 348 336 291 28 271
s 0125 : :
c 6 . 630 493 481 724 480 494 | 511 268 264 611 204 209
o : "
2 | 634 608 609 630 579 588 1 451 446 418 416 384 354
& 0.025 : g
6 ! 1049 551 545 1193 535 543 | 950 376 350 11.83 3.40 293
- 3 i 828 745 739 826 7.15 709 | 751 594 625 732 530 573
) 6 | 1812 664 632 2098 637 632 | 1869 480 482 2258 430 437
TABLE V

THE COLORIMETRIC ACCURACY IN TERM OF MEAN OF AE4 OF SPECTRAL ESTIMATION BY THE PI, PCA, CCR METHODS AND THEIR WEIGHTED VERSIONS UNDER
DIFFERENT LEVELS OF QUANTIZATION AND RANDOM NOISES FOR CROSS TRAINING MODE

Mods Kodak CCSG
Noise type Noise level " i
(channel) '
1 PCA Pl GCR WwPCA wPl wCCR ! PCA Pl CCR WPCA wPl WwCCR
i |
% 3 i 430 410 441 4.21 368 377 1 233 227 228 158 155 159
No noise
6 1 340 103 103 236 103 087 i 110 087 081 080 059 057
3 | 437 415 448 427 374 384 . 253 239 246 181 169 1.70
2 8 bit ' '
2 6 . 364 158 161 2.72 1.91 192 1 151 105 111 130 082 087
o 1 1
5 6 bi 3 | 480 481 512 485 450 461 , 387 340 331 321 277 266
2 i ' ;
3 6 ) 621 467 471 574 480 486 | 370 263 237 372 223 213
= - :
é oo 3 ! 1348 1148 1296 1291 1123 1290 | 990 612 633 958 639 7.2
l 1 '
6 ' 2560 1102 1233 26.85 1052 1263 | 1654 517 573 2424 536 596
— 3 '\ 569 544 558 552 519 502 ! 447 422 412 402 355 324
6 | 788 533 576 897 522 525 ! 507 348 348 539 273 287
g 3 | 804 808 804 779 753 700 | 727 705 7.1 688 622 567
3 0.0125
E 6 : 1431 827 820 1480 7.84 721 | 953 564 517 1013 486 425
2 0025 3 : 1455 1230 1272 1479  10.89 1027 E 1167 1272 1149 1149 950  7.95
& ’ 6 : 2977 1167 1189 2958 991 1033 : 2167 1068 9.03 2153 882  7.40
008 3 i 2657 2025 1942 2686 1651 1600 i 2546 17.35 20.16 2603 1313 13.98
' 6 | 5932 1743 1612 61.37  14.85 1372 1 4338 1441 1471 4351 1196 12.26
]

CIE1964 standard observer.

As the results indicate, the PI and CCR methods
achieved higher noise robustness in comparison to PCA. In
fact, the inherent relation between the two sets of variable

techniques. In addition, the CCR and PI methods present
higher noise robustness in comparison to PCA.

VI. CONCLUSION

Three common techniques, i.e. PI, PCA and CCR and
their weighted versions were employed for the estimation
of the reflectance spectra of the Kodak Q_60,
Colorchecker SG and Munsell datasets from the
colorimetric responses of a virtual camera under different
levels of quantization and random noises. The robustness
of the implemented methods was evaluated by computation
of the root mean square (RMS) error of the difference
between the reconstructed and actual reflectance as well as
the CIELAB color difference values under illuminant A for

in these methods, i.e. colorimetric and spectral data, led to
their superiority especially at high level of noise.

In addition, the effect of the numbers of camera
responses on the reconstruction error was evaluated by
using of the 3 and 6-channel camera modes as well as
employing of a 2-illuminant approach. The availability of
using a 3-channel camera under 2 illuminants made this
method more practical in comparison to 6-channel camera
style. Moreover, the type of training dataset showed a
significant role in the results of spectral recovery. The
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similarity between the training and testing datasets led to
the better results. In conclusion, the wPI as the simplest
technique among the spectral reconstruction approaches
was found the best method for the reflectance recovery in
presence of different levels of quantization and random
noises.

o Munsell

« Kodak

10

00

af

20

b

o}

20k

ant

Fig. 3. Three and two dimensional representations of Munsell and Kodak
sets under D65 illuminant and 1964 standard observer in the CIELAB
color space.

[1]
[2]

[3]

[4]

[5]

[6]

(7]

[8]

REFERENCES

A. Hornberg, Handbook of machine vision. Weinheim, Germany:
WILEY-VCH, 2006, pp. 361-426.

F. H. Imai and R. S. Berns, “High-resolution multi-spectral image
archives: a hybrid approach”, in: Proc. IS&T/SID, The sixth Color
Imaging Conference: Color Science, Systems, and applications,
Scottsdale, AZ, 1998, pp. 224-227.

J. Y. Hardeberg, “Acquisition and reproduction of colour images:
Colorimetric and multispectral approaches”, Ph.D. dissertation,
Ecole Nationale SupeTieure des Tele’communications, Paris,
France, 1999.

A. R. Cortes. “Multispectral analysis and spectral reflectance
reconstruction of art painting”, Ph.D. dissertation, Ecole Nationale
Supe rieure des Te le ‘communications, Paris, France, 2003.

V. Cheung, C. Li, S. Westland, J. Y. Hardeberg, and D. R. Connah,
“Characterization of trichromatic color cameras by using a new
multispectral imaging technique”, J. Opt. Soc. Am. A., vol. 22, no. 7,
pp. 1231-1240, Jul. 2005.

D. Bums and R. S. Bems, “Quantization in multispectral color
image acquisition”, In: Proc. IS&T/SID, The seventh color imaging
conference: color science, systems and applications, Scottsdale, AZ,
1999, pp. 32-35.

Y. Zhao and R. S. Bemns, “Image based spectral reflectance
reconstruction using matrix R method”, Color Res. Appl., vol. 32,
no. 5, pp. 343-351, Oct. 2007.

A. Ribés and F. Schmitt, “Linear inverse problems in imaging”,
IEEE Signal Proc. Mag., vol. 25, no. 4, pp. 84-99, Jul. 2008.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

17

H. S. Fairman and M. H. Brill, “The principal components of
reflectance”, Color Res. Appl., vol. 29, no. 2, pp. 104-110, Apr.
2004.

D. Y. Tzeng and R. S. Bems, “A review of principal component
analysis and its applications to color technology”, Color Res. Appl.,
vol. 30, no. 2, pp. 84-98, Apr. 2005.

Y. Zhao, A. L. Taplin, M. Nezamabadi, and R. S. Berns,
“Modifications of a Sinarback 54 digital camera for spectral and
high-accuracy colorimetric imaging: Simulations and experiments”,
Munsell Color Science Laboratory, Centre for Imaging Science,
RIT, Tech. Rep., June 2004. [Online]. Available: http://www.art-
si.org/PDFs/Acquisition/Sinar Report June2004.pdf

H. Laamanen, T. Jaaskelainen, and J. P. S. Parkkinen, “Comparison
of PCA and ICA in color recognition”, in: Proceedings SPIE, vol.
4197, 2000, pp. 367-377.

Z. Li and R. S. Berns, “Comparison of methods of parameric
correction for evaluating metamerism”, Color Res. Appl., vol. 32,
no. 4, pp. 293-303, Aug. 2007.

Y. Sun, F. D. Fracchia, T. W. Dalvert, and M. S. Drew, “Deriving
spectra from colors and rendering light interference”, IEEE Comput.
Grapg. Appl., vol. 19, no. 4, pp. 61-67, Jul./Aug. 1999.

A. Mansouri, T. Sliwa, J. Y. Hardeberg, and Y. Voisin,
“Representation and estimation of spectral reflectances using
projection on PCA and wavelet bases”, Color Res. Appl., vol. 33,
no. 6, pp. 485-493, Dec. 2008.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake,
“Limitations of color samples for spectralestimation from sensor
responses in fine art painting”, Opt. Rev., vol. 6, no. 1, pp. 57-61,
Jan./Feb. 1999.

H. L. Shen and J. H. Xin, “Spectral characterization of a color
scanner based on optimized adaptive estimation”, J. Opt. Soc. Am.
A., vol. 23, no. 7, pp. 1566-1569, Jul. 2006.

H. L. Shen, P. Q. Cai, S. J. Shao, and J. H. Xin, “Reflectance
reconstruction for multispectral imaging by adaptive Wiener
estimation”, Opt. Express, vol. 15, no. 23, pp. 15545-15554, Nov.
2007.

S. Usui, S. Nakauchi, and M. Nakano, “Reconstruction of munsell
color space by a five-layer neural network”, J. Opr. Soc. Am. A., vol.
9,no. 4, pp. 516-520, Apr. 1992.

F. M. Abed, S. H. Amirshahi, and M. M. Abed, “Reconstruction of
reflectance data using an interpolation technique”, J. Opt. Soc. Am.
A., vol. 26, no. 3, pp. 613-624, Mar. 2009.

F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, “Reconstruction
of reflectance spectra using weighted principal component analysis”,
Color Res. Appl., vol. 33, no. 5, pp. 360-371, Oct. 2008.

N. Eslahi, S. H. Amirshahi, and F. Agahian, “Recovery of spectral
data using weighted canonical correlation regression”, Opr. Rev.,
vol. 16, no. 3, pp. 296-303, May 2009.

V. Babaei, S. H. Amirshahi, and F. Agahian, “Using Weighted
Pseudoinverse Method for Reconstruction of Reflectance Spectra
and Analyzing the Dataset in Terms of Normality”, Color Res.
Appl., vol. 36, no. 4, pp. 295-305, Aug. 2011.

K. Ansari, S. H. Amirshahi, and S. Moradian, “Recovery of
reflectance spectra from CIE tristimulus values using a progressive
database selection technique”, Color Technol., vol. 122, no. 3, Pp-
128-134, June 2006.

F. Ayala, J. F. Echavarri, and P. Renet, “Use of three tristimulus
values from surface reflectance spectra to calculate the principal
components to reconstruct these spectra by using only three
eigenvector”, J. Opt. Soc. Am. A., vol. 23, no. 8, pp. 2020-2026,
Aug. 2006.

University of Joensuu, Color Group, Spectral Database. [Online].
Available at: http://spectral.joensuu.fi/.

D. Connah, J. Y. Hardeberg, and S. Westland, “Comparison of
linear spectral reconstruction methods for multispectral imaging”,
in: Proc. IEEE Int. Conf. Image Proc., vol. 3, 2004, pp. 1497-1500.
D. Connah, S. Westland, and M. G. A. Thomson, “Recovering
spectral information using digital camera systems”, Color Technol.,
vol. 117, no. 6, pp. 309-312, Nov. 2001.

R. Penrose, “A generalized inverse for matrices”, in: Proc. of
Cambridge Philosophical Society, 1955, pp. 406-413.

L. T. Maloney and B. A. Wandell, “Color constancy: a method for
recovering surface spectral reflectance”, J. Opt. Soc. Am. A., vol. 3,
no. 1, pp. 29-33, Jan. 1986.

H. Hotelling, “Relations between two sets of variates”, Biometrika,
vol. 28, no. 3/4, pp. 321-377, Dec. 1936.



JOURNAL OF TEXTILES AND POLYMERS, VOL. 1, NO. 1, JANUARY 2013 18

[32] M. Borga, “Learning Multidimensional Signal Processing”, Ph.D. [33] R. A. Johnson and D. W. Wichern, Applied multivariate statistical
dissertation, Sweden: Linképing University;1998. analysis, 2" ed., Upper Saddle River, NJ: Prentice-Hall, 1988.



