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A Novel Approach in Geometrical-Mechanical Analysis of
Plain Woven Fabrics; Initial Load-Extension Behavior

Mostafa Jamshidi Avanaki, Ali Asghar Asgharian Jeddi and Abbas Rastgoo

Abstract—A theoretical analysis for the initial state of load-
extension behavior in plain woven fabrics is presented. For
this purpose, a new approach for geometrical modeling of
woven fabrics consisting of its structure in inclined and float
regions is developed which results in theoretical estimation of
all the structural parameters of plain fabrics including its
weave angle. Then, by applying the strain energy method and
considering a virtual spring in the unit cell, a modified model
for predicting the initial tensile modulus of plain woven
fabrics is proposed. The results are shown better agreement
with experimental data than previous models.

Key words: Load-extension, weave angle, strain energy,
initial modulus

I. INTRODUCTION

he mechanical behavior of woven fabrics is of interest

in numerous applications, including apparel and
technical usages. Engineered designing of textile fabrics
for specific mechanical properties requires the ability to
predict its behavior in various loading conditions which
among them, tensile properties has been analyzed by
numerous researchers [1-7]. However, due to the
geometrical model and the approach in mechanical
analysis, most of the available works are resulted in
complicated elliptic integrals or needs numerical solutions
even in the domain of small deformation analysis.

There are numerous applications of woven fabrics
involved with small extensions which have received much
attention by some scientists [8-10]. The work developed by
Leaf and Kandil [10] that considering this state of
deformation is the basic approach in this work which is
tractable and amenable to predict the initial load extension
behavior of plain woven fabrics in a close form solution.

In this work, a new approach for the geometrical-
mechanical analysis of the plain woven fabrics is
developed which is also applicable to other woven
structures.

It is assumed that the yarns cross section are always
circular along the yarn path as was developed by Peirce
[11] and the yarns center line obeys the saw tooth
geometry which was developed by Kawabata [12]. On the
base of these assumptions, a new geometrical modelling is
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proposed which includes both inclined and float regions.
The mechanical approach in this work employs the strain
energy method through applying the Castigliano’s
theorem. A virtual spring is defined in the unit cell of the
structure and used in mechanical analysis which results in
better prediction of initial tensile modulus of plain woven
fabrics. The effect of friction is ignored in this work. It is
shown that the proposed theory does lead to results that are
in agreement with experimental data.

II. GEOMETRICAL MODELLING

Geometrical modelling of woven structures has been the
subject of many works [13-16]. Weaves geometry is
determined by defining a unit cell representing the whole
fabric characteristics. The proposed model and its
structural parameters for the weave repeat of plain woven
fabrics is shown in Figure 1. The indices i and j are used to
denote warp and weft yarns sequentially and the indices f
and c represent float and inclined regions respectively. The
weave repeat in Figure 1 is shown for the weft yarns length
which is included by the cross section of warp yarns. So,
this structure can be also developed for warp lengthwise by
substituting the index i instead of j. Moreover, Y; is used to
denote the spacing between warp yarns while Py is the
width of unit cell. In the unit cell, Pj and P are used to
denote the projection of weft yarns float and inclined
length, respectively. It should be noted here that in this
work, all the lengths are considered to be in mm and the
angels are in degree.
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Fig. 1. Geometrical parameters in the weave repeat of plain fabrics.

The yarns diameter (d) is calculated by Eq. (1) given by
Peirce [11].
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d= JTex
28.02,/Pp;

In this equation, Tex is the yarn linear density (g/km),
p; is the fiber density (g/em’®) and @ is the yarn packing

(mm) ®

factor. For blended yarns, average fiber density is given by
the Eq. (2).
n
1w @
pf i=1 pi
where; w, is the weight fraction of the i component, P,

is the fiber density of the i® component and n is the
number of components of the blend. The proposed unit cell
in our model is equivalent to the half of weave repeat
which is demonstrated in Figure 1. Furthermore, due to
symmetry, we consider half of the unit cell for developing
the equations as is shown in Figure 2. Therefore, all the
results will be doubled to cover the whole unit cell.

Fig. 2. Half of the Unit Cell Geometry.
In this geometry, Ly is used to denote the weft length in
float region and LCJ. is used to denote its length in inclined

region. Therefore, in the proposed geometrical model, the
value of the total length of weft yarns in the unit cell can
be obtained as follows:
L;=2Lg+L,) 3)
In the proposed geometry, it is assumed that the
projection length of weft yarns in float region (Pfj) is equal
to the half of the warp yarns diameter which is obtained

through Eq. (4). Therefore, by attention to Figure 1, the
length of yarn in float region can be estimated by Eq. (5).

d, .
Py :7 “4)
Py

Moreover, by knowing that the width of the proposed
unit cell is equal to the warp yarns spacing, as shown by

Eq. (6), the projection of weft yarns in inclined region ( ch )
can be obtained through Eq. (7).
Pj =Y, (6)
P. - Pfj

By=—— ™

36

The amount of the length of weft yarns in the unit cell
(Loj) and the spacing between warp yarns (Yi) could be

measured by experimental works. The amount of (Loj)

represents the value of weft yarns length in unit cell which
is differ from that in proposed straight line geometry due to
the curvy path of yarns in real fabrics. So, its amount in the
proposed geometry will be followed up here.

By knowing the length of yarn in float region (ij)

through Eq. (5), the preliminary estimated length of weft
yarn in crimp region LOCJ.) can be obtained as follows:

Log =Lo;—Lg 8)

It can be found through geometrical model that the
projection of inclined yarn can be obtained as follows:
LCj = LOCj ><cosGOj = ch C)

So, the preliminary estimated value of weave angle can
be calculated by Eq. (10).

B,
8; =Cos ™|
LOcj

Moreover, the preliminary estimated value for half of
the crimp amplitude (hy;) can be calculated as follows:
hg; =LoSinby (1D

After estimating the preliminary amounts of structural
parameters, their modified values can be obtained. For this
purpose, based on Peirce [11] assumption, the condition
that the warp and weft yarns touch each other at cross over
points is considered as constraint which have to be
satisfied as follows in which h refers to the half of the
crimp amplitude as is shown in Figure 2.

d; d

h +h =—1+-1

J 2 2
So, by considering Egs. (13) and (14), the improved

value of the weft yarns crimp amplitude (h j) can be

Ocj =

(10)

(12)

estimated as follows:

d, +d

Dy == (13)

Dy, =h, +hy, (14)

y=Da=Dy (15)
K Ratio

h,=hy+V (16)

The amount of V in Eq. (16) should be specified by
applying an appropriate amount of K Ratio in Eq. (15). K
Ratio represents the ratio of discrepancy between D, and
D,, which is allocated to crimp amplitude, (h j). By the

way, finally the modified value for weave angle is obtained
as shown by Eq. (17).

h.
6, =Sin""| —-
LOcj

By substituting this weave angle in Eq. (9), the

amn

improved value for the inclined yarn projection as (L'Cj is
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calculated as follow:
(L,;)=LogxCoslo,) (1s)

Difference between the projection lengths of inclined
yarn in Egs. (9) and (18) is related to the amount of yarns
which is curved around each other at intersection points in
real fabric, i.e.;

Q; =curved length = Ecj -L;

This phenomenon is demonstrated in Figure 3.
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Fig. 3. Schematic demonstration of curved length.

The K Ratio index in Eq. (15) can be obtained by
attention to the fact that some portion of difference
between Dy and Dy in Egs. (13) and (14) will be used to

cover the curved shape in addition to satisfying the
aforementioned constraints through Eq. (12). The optimum
amount of K Ratio can be found through minimizing the
following functions owing to the point that sum of the
curved length (Q) and V have to be equal or in very close

agreement with the preliminary estimated discrepancy,
(D,-D,).
K;;=|Q/+V|-[Dy -D,| (20)
Equation (20) should be solved for both warp and weft
yarns. In addition, it should be noted that the warp and
weft yarns are assumed to be in equilibrium state of
balanced fabrics. Therefore, the following function needs
to be also minimized at the same time.
K:’[KJ—\KJ” @1
By applying Egs. (20) and (21) simultaneously in a
computer program (K programming), the optimum specific
amount of K Ratio can be calculated. Then, the length of
weft yarn in inclined region of the proposed unit cell is
modified and obtained as follows:
Lcj =LOcj —Qj (22)
Therefore, by assuming straight line path for yarns in the
unit cells, the length of weft yarns in the unit cell is
obtained through Eq. (23).
L;=2Ly+Ly) 3)

1. MECHANICAL MODELLING

Mechanical modelling of woven structures has been the
subject of many works including the work performed by
Dabiryan [17] through defining frictional energy and other

researches [18-20] through applying energy method and
continuum mechanics.

The loading condition in the half of the unit cell is
demonstrated in Figure 4. The force f; is the external

applied force. By applying the external tensile force, the
compressive forces v; will be generated between yarns

which are distributed over the region of yarn contact which
was assumed to be pointed forces in previous works.
To predict the initial state of load-deformation behavior, it
was assumed that in the field of loading condition, the
yarns are linearly elastic; so the strain energy method and
the Castigliano’s theorem become applicable. Moreover, it
was assumed that the fabric behave linearly elastic in its
initial state of deformation; so it was possible to use the
Hook’s law.
By knowing that any possible deformation caused by
applying forces which makes the yarns to be extended,
bent, compressed or sheared, requires its own strain
energy, the total required energy Uy for any deformation
in the structure is obtained by using the following equation
which is equal to sum of its components.
Up+Ug+Ug+Uc+Ug (24)
The components of strain energy in the unit cell
constituents are proposed to be calculated as follows. For
each component, the strain energy should be calculated in
both inclined and float regions. In this work, the strain
energy of yarns shearing which was ignored in previous
works [10, 17] is considered.

Fig. 4. Loading condition in the proposed geometry.

A. Strain Energy Analysis

The yarns are assumed to be linear elastic in the domain
of loading conditions. So, the strain energy analysis can be
applied on the elements of unit cell in inclined and float
regions. Details are presented in Appendix I.

1) The Strain Energy in inclined Region

The strain energy of extension, bending, compression
and shearing in inclined region is obtained as follows:

a) Strain Energy of Extension in inclined Region

ch = ijOSGj + I)J.Sin(:)j

Ug =( %}\’J.(fiCOSB §+0;8in8,)” L
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1) Strain Energy of Bending in inclined
Region

MCj = (fiSinej —UjCOSGj )s

L= (%Bjj.(fisme ;—,Cos8; )2{L3°% J
(@) Strain Energy of Compression in
inclined Region
Vej = njeg; = Z(fj sin 8; — v; cos 6]-)
Uegj = (Z/Hj) . (£ sin 6; — v; cos Gj)z. d;. Q;

3) Strain Energy of Shearing in inclined
Region

ch = (fj sin 9] - V]' Cos 6,)

. 2
Ugg = <1/2G]-) .(f; sin 6; — vj cos §;)". L

b) The Strain Energy in Float Region

The strain energy of extension, bending, compression
and shearing in float region is obtained as follows:

€9 Strain Energy of Extension in Float
Region

Trj = f
2
Uefj = (1/2%) f] .Lf]'

2) Strain Energy of Bending in Float
Region

Mf]‘ = Vj. S
3
Lt

=1 2 J
Upgj = ( /213,-)-"1- 24

3) Strain Energy of Compression in Float
Region
Vg = MjEq; = 2Vj
= (2 2
4) Strain Energy of Shearing in Float
Region

Tfj =V
Usfj = (I/ZGj) .VZ. Lf]'

B. Total Strain Energy

The total strain energy in the unit cell is calculated by
using Equation (24) where;

Ug = Uec + Uer = Z(Ueqi + Uecj + Uep + Uefj)
Ug = Upc + Ups = 2(Upci + Upgj + Upg + Upg)
Uc = U + Ugr = 2(Ucq + Uccj +Uesi + Ucfj)
Us = Uge + Ugr = 2(Uge; + Uscj + Ugg + Usfj)
This leads to Equations (25) through (28) which will be
used in calculation of fabric strain.

_ (fj cos 8; + v sin 6]-)2. Lg

E

X
j
(fi cos B; + vi sin 8;). L; (25)
A
£%. Lg N f;%. Lg
}\] 7\'[
_ (f] sin 9] - V]' cos 9]-)2. L?é]
B 3B,
(f; sin 8; — vj cos 6;)%. L3, 26)
3B,
24B; © 24B
4(f; sin 8; — v; cos 9]-)2- d;. Q;
UC =
mj
N 4(f; sin 8; — v; cos 8;)2. d;. Q; @7)
Ni
+4-Vj2.d]- .Lf]' N 4Viz.di.Lﬁ
nj Ni
= (f; sin ; — v; cos Bj)z.Lcj
s G’
(f; sin 8; — v; cos 8;)2. L; 28)
Gy
Y-lg  vils
G] Gi

C. Calculation of fabric strain:

By knowing the total strain energy and applying the
Castigliano’s theorem, we know that
oUr

ep = oh =T/ 9)
Therefore the Equation (30) can be obtained.
&h
ZLC](f] cos 9] 4+ vsin ej).COS 9] ZLﬁf]
- -
A A
N 2L3(f; sin 8; — v cos 6;). sin 6
3B; (30)
8(f; sin 8; — v; cos 6;).d;. Q;. sin 6;
N
Z(fj sin 6; — vj cos 9]-). sin ;. Lg;
* G
j

If the yarns are assumed to be inextensible and
incompressible which can be correct just in the initial state
of fabric deformation, so the A , n and G tend to infinity
and the Equation (30) reduces to:

f; (2L3;sin?6;) v (2L sin 6. cos 6;
€ (Strian) = = = (31
o == 538
In this equation, the generated force between the yarns
should be calculated.
Ur/ _ 80y-pp
an - 2

(32)
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The amount of §(h; — D;), denotes the change that occurs
in the fabric thickness at cross-over points. When the
fabric deformation takes place, the heights for the warp
and weft yarns change but if the yarns are to remain in
contact, due to crimp interchange, the changes must be
equal. Therefore,

This gives;

au au
T/aVi + ! aV] =0

Therefore Eq. (33) can be obtained.
z {ZLck (fx cos By + vy sin By). sin B

0 Ak
k=i
213, (fi sin B — vy cos By).cos By vi. L3
3By 12By
8(fy sin By — vy cos By). di. Q. cos Oy (33)
Nk
i 8Vk. dk' Lﬂ( Z(fk sin Bk — Vg COS Gk) cos Gk. Lck
Mk Gy
ka' Lfk
+ =0
G }
Since, v; = v; = v this equation can be solved for v to give
A
r=s (34)
Where A and B are presented in Equations (35) and (36).
2L 213
A=Z f, cos Oy sin By . [ — —= =
o )Lk 3Bk
- 8d 2L &)
4 S Qx 3 ck)}
Nk Gk
g o z 2L k. sin?0y N 213, . cos?6y L3
B & A 3By 12By
=i,
8dk. Qk' COSZBk 8dk Lfk
+ -
ﬂkz Nk (36)
2Lk cos“0 2L
g P05 Ry _fk}
G Gy
Again the assumptions of inextensibility and
incompressibility for the yarns are considered. So, Eq. (34)
reduces to
3 LS
f; cos 0; sin 6;. (2;;;‘) + fj cos ; sin 8; . (231;-])
i )
= 37
v 2L3; .cos26; L_?l Zng .cos26; E]_ L57)
3B;j 12B; 3B]' 1ZB]'

D. Calculation of initial fabric Young’s modulus

Eq. (31) represents the fabric strain in weft direction. If
one assumes that, the behavior of fabric is linearly elastic
in its initial state of deformation, it can be deduced that the
Hook’s law can be applied for calculation of fabric
Young’s modulus in such state. Moreover, in a uniaxial
loading condition in weft direction, the amount of loads in
warp direction (f;) is equal to zero which results in
theoretical estimation of initial fabric modulus as follows
(detail are presented in Appendix II).

. P Aj. cot §; 38)
I~ PA tan ; L3 L
177 J 5 el T
Aj.cot; + 128, + 125,
where;
(213, sin 8; cos 6;)
A= %_L 39)
j
L3, sin 6; cos 6;
A= (2 ci Sl;‘Bl cos 1) (40)
i

Equation (38) is the preliminary proposed theory for
predicting the initial uniaxial modulus of plain woven
structures in the linearly elastic state of deformation.

IV. EXPERIMENTAL

For the wvalidation of the proposed theory, the
experimental data reported by Leaf [10] was used. The
specifications of samples are shown in Tables I and II for
the warp and weft yarns, respectively.

The amounts of fiber density and yarn packing factor
extracted from literature for the warp and weft yarns were
used in Eq. (1) to calculate the yarn diameter. The results
are shown in Tables IIT and IV.

TABLEI
WARP YARN SPECIFICATION [10]
Yarn linear density Twist
Fabric group Material Spinning method
(tex) (turns/cm)
Common to all 60/2 polyester not-known not-known
TABLEII
WEFT YARN SPECIFICATIONS [10]
Yarn linear density Twist
Fabric group Material Spinning method
(tex) (turns/cm)
X 60/2 cotton ring 6
Y 7412 cotton ring 52
z 98/2 cotton open end 4.4
A 60/2 polyester not-Known 4.0
B 60/2 polyester-cotton not-Known 4.2
C 46/2 polyester-cotton not-Known 74
TABLE III
WARP YARN CALCULATED PARAMETERS
Fiber density
Fabric group Pf (g%m) Yarn packing factor (I) dl (mm)
Common to all 1.38 0.65 0.292
TABLEIV
WEFT YARN CALCULATED PARAMETERS
Fiber density
Fabric group pf(g%m) Yarn packing factor (1) d1 (mm)
X 1.52 086 0.289
¥ 1.52 0.58 0.327
z 1.52 0.55 0.386
A 1.38 0.65 0.292
B 1.45 0.62 0.292
(o] 1.45 0.64 0.251

The warp and weft yarn spacing, the length of yarns in
the unit cell and the yarns bending rigidity are shown in
Table V. By applying the proposed theory for geometrical
modeling of the structure, the geometrical parameters of
samples were theoretically estimated in both warp and weft
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directions. Results for the warp direction are represented in
Table VI. The amount of K Ratio was calculated by
applying Eq. (20).

Finally, the preliminary amounts of initial tensile
modulus of samples were calculated through applying the
Eq. (38) for the warp yarns. The results are shown in Table
VII with the results reported by Leaf [10] for both
measured values through experimental works and
calculated values through applying his theory.

By comparing the results, it is found that the outputs of
preliminary proposed model is far from experimental
Leaf’s values which indicate that some modifications have
to be performed. This deviation seems to be strongly due
to the fact that the inclined and float regions in the
proposed geometry are not simply jointed without any
effect on each other. Therefore, it was assumed that these
elements are jointed together through a virtual spring
(elastic rod spring as is demonstrated in Figure 3) and the
strain energy of this spring was calculated and considered
in the mechanical modelling as follows.

TABLEV
EXPERIMENTAL SPECIFICATIONS OF SAMPLES [10]

Bending rigidity

Unit cell yarn length

a g Yarn spacing (mm) 2
3 © (mm) (mN,mm’)
5 -
2 E
5 ] Yi Yi Lo Lo, B B,
LI'Y
1 0.485 0.588 0.700 0.514 5.62 6.06
X 2 0.488 0.624 0.758 0.515 5.62 6.06
3 0.485 0.713 0.835 0.508 5.62 6.06
1 0.490 0.677 0.798 0.514 5.62 7.05
Y 2 0.492 0.739 0.871 0515 5.62 7.05
3 0.485 0.849 0.983 0.513 5.62 7.05
1 0.494 0.779 0.939 0.508 5.62 8.16
Z 2 0.494 0.839 1.022 0.507 5.62 8.16
3 0.491 0.691 0.847 0.509 5.62 8.16
1 0.476 0.589 0.704 0.504 4.44 4.44
A 2 0.587 0.794 0.827 0.616 4.44 4.44
3 0.549 0.532 0.606 0.615 4.44 4.44
1 0.556 0.548 0.598 0.623 4.44 4.25
B 2 0.591 0.637 0.722 0.622 4.44 4.25
3 0.594 0.756 0.832 0.624 4.44 4.25
1 0.568 0.465 0.509 0.621 4.44 2.96
[o] 2 0.577 0.538 0.597 0.639 4.44 2.96
3 0.571 0.662 0.730 0.608 4.44 2.96

V. MODIFIED PROPOSED THEORY

To consider the strain energy of virtual spring in the unit
cell, it was first necessary to define its rigidity. For this
purpose I' was considered to be the generated torque in the
spring through applied force (f) at distance (r) as follows:
'=fr

Then by using Castigliano’s theorem through strain
energy method, and considering the virtual spring diameter
as D¢ and the number of its helix rings as N, the resulting
angle after applying the external torque I' is obtained as
follows. The strain energy in virtual spring is calculated
by:

40

Applying the Castigliano’s theorem, gives;

aU, ™sNs 9 (f2.r% ds mDsNs £, r2 ds
o= | —=—)=]
0 0

of of 2B B
Leading to;
mD NI @1)
B
TABLE VI
CALCULATED GEOMETRICAL PARAMETERS IN WARP
DIRECTION
g ¢ 8; P P, L L ;
> o : i fi ci fi ci Ql
2 g K Ratio (degree)  (mm)  (mm) (mm) (mm) (mm)
fid %]
1 171 4536 01447 02216 00724 02511  0.0266
X 2 167 4305 01447 0.23% 00724 02911 00156
3 159 3866 01447 02841 00724 03305  0.0146
1 167 4413 01635 02568 0.0817 02882 00290
Yy 2 162 4059 01635 02878 00817 03346 00191
3 154 3634 01635 03428 00817 03971  0.0127
1 165 4556 01932 02920 00966 03411 00318
z 2 16 4239 01932 03229 00966 03976 00168
3 1.74 5060 01932 02489 00966 02855  0.0414
1 172 4590 01459 02215 00730 02517 00273
A 2 153 3442 01459 03015 00730 03199  0.0206
3 173 4142 01459 01930 00730 02095  0.0205
1 17 3905  0.4458 02011 00729 02006  0.0255
B 2 16 40.21 01458 02456 00729 02625  0.0256
3 1.53 3374 01458 03051 00729 03233  0.0198
1 1.69 4376 01256  0.1697 00628 01604  0.0313
c 2 1.65 3555 01256 02062 00628 02213  0.0144
3 1.55 3336 01256 02682 00628 02864  0.0158

Therefore the deformation rigidity of the virtual spring
in the structure can be obtained through Eq. (42). In this
equation, instead of helix rings number (N;), two cases
were assumed. In the first case, the contact length between
warp and weft yarns extracted from geometrical model was
used while in the second case the curved length was
considered.

ab_ B B
j a]' - 1D N - D, spring[:ength (42)
TDg
A “
UTQ + Ly
B
Azl' = a’

By attention to the proposed geometrical model, the
torque in the structure is obtained by using Eq. (43) as
follows:

[ = (fj sin 6; — vj cos 6)). Lg;. W @3)

Where by attention to the above mentioned cases, W
refers to Wy and Wy in which;
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4 L
w1j=(1+M)
L

Q

TABLE VII
INITIAL TENSILE MODULUS OF SAMPLES
E;
fg‘ e (mN/cm)
¢ B "
;}_E% § Experimental Leaf's theory Freliminary —
theory Case 1 Case 2
1 14.3 25.57 28.87 9.55 22.94
X 2 9.4 22.08 26.83 10.29 24.00
3 14.2 30.37 36.90 14.38 33.44
1 15.9 30.86 28.57 10.51 23.46
Y 2 15.5 31.67 31.67 12.98 28.32
3 14.6 38.69 41.14 17.81 38.54
1 13.7 31.62 22.04 9.47 19.09
z 2 10.6 31.07 2433 11.63 2292
3 14.9 27.02 18.68 6.83 14.51
1 9.2 19.77 25.95 767 20.15
A 2 9.1 21.30 26.41 9.52 21.89
3 12.7 19.48 26.39 7.70 20.22
1 24.0 29.00 34.54 8.96 23.86
B 2 13.3 15.77 19.27 6.32 15.05
3 11.7 20.71 25.83 9.43 2152
1 23.2 27.32 34.02 6.77 19.42
C 2 18.0 19.16 25.81 8.84 21.31
3 12.0 18.56 24.92 917 20.97

Therefore the strain energy required for its deformation
can be calculated by Eq. (44).

. 2
Uy = (1/2Aj) (£ sin 8; — v; cos 8;). Lej. W;) (44)
Which its amount for the warp and weft yarns is
UA = ZUA] + ZUAi (45)

Now, it is possible to include the strain energy of virtual
spring into the total strain energy formulation of the unit
cell as follows:

Up =Ug+Ug +Uc + Ug + Uy (46)

Finally, by following the same procedure presented
earlier, the modified theory is proposed as follows (details
are presented in Appendix III).

7 R(A)tanb, 1y L3
Ajcot6; + (TBI + ?B,)
Where;
A = 2125in6; cos 0 ﬁ+ﬁ 8)
j = c]-Sln i CoS i+ 3B] A]
_ Lg W2
A; = 21%;sin 6 cos 6;. <3—-§: + A—i) (49

This theory was again applied to the samples and the
results are shown in Table VII. The results are in close
agreement with Leaf’s proposed theory. The discrepancy
between results extracted from theoretical models and
experiments are shown in Table VIII. The deviation
between predicted results and experimental values seems
to be due to the fact that the cross sections in samples are
not circular which was assumed in proposed model.

Moreover, the predicted values in modified theories are
found to be in better agreement with experimental values
than preliminary theory in second case while the first case
of modified theory correspond well with experimental
values just for samples in groups X, Y and Z.

TABLE VIII
THE COMPARISON OF RESULTS FOR THE TENSILE MODULUS

Discrepancy

g g Experimental )

s 2

é 5 E, leafs N Modified theory

w Preliminary theory

(mN/Cm) theory Case 1 Case 2

1 14.3 44.08 50.47 49.80 37.66

X 2 9.4 57.44 64.96 8.64 60.83
3 14.2 53.24 61.51 1.27 57.53
1 15.9 48.48 44.34 51.26 32.24

Y 2 15.5 51.05 51.06 19.39 45.26
3 14.6 62.26 64.51 18.03 62.12
1 13.7 56.67 37.83 44.63 28.24

z 2 10.6 65.89 56.43 8.87 53.75
3 14.9 44.85 20.26 118.03 267
il 9.2 53.46 64.55 19.97 54.35

A 2 9.1 57.29 65.54 4.43 58.42
3 127 34.80 51.88 64.88 37.21
1 240 17.25 30.51 167.96 0.61

B 2 13.3 15.68 30.98 110.36 11.63
3 M7 43.52 54.70 24.08 45.62
1 232 15.08 31.80 242.59 19.44

[} 2 18.0 6.03 30.26 103.60 15.53
3 12.0 35.34 51.85 30.81 42.78

Results of experimental and proposed theoretical model
are shown in Figure 5 indicating that considering the
virtual spring as the joining elements in the structure, leads
to improvement of the final predicted values.

VI. CONCLUSION

In this work, a new approach for geometrical-mechanical
modeling of plain woven fabrics was developed. In the
proposed geometrical model, it was assumed that the yarns
have two regions (inclined and float) in their path. By
applying this model and an appropriate amount of K Ratio,
all the structural parameters including the weave angle and
curved length were theoretically calculated.

Then, the strain energy method and Castigliano’s theorem
were used for the mechanical analysis of the structure. The
resulted theory was used in predicting of initial tensile
modulus of some samples which were in large deviation
from experimental data. Then, the theory was modified by
assuming a virtual spring in the unit cell. For this purpose,
the calculated amount of contact and curved lengths was
used as first and second cases, respectively. The resulting
modified theories were again checked with same samples.
This shows that in the case of saw tooth geometry, the
inclined and float elements in the unit cell structure are not
simply jointed in a point meaning that these regions have
mutual effect on each other which is in accordance with
reality.

Therefore a theoretical model for predicting the initial
modulus of plain woven fabrics was developed which
considered the inclined and float regions for its unit cell
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Fig. 5. The results for the initial tensile modulus of plain woven fabrics (mN/cm)

structure. This was an extra advantage of the proposed
model which made it capable to be extended for other
woven structures which are our aims in future works.
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NOTATIONS
Subscript i Denotes to the values in warp direction
Subscript Denotes to the values in weft direction
fiber density of the i component of the bleneded
Pi
yarn
Pfiber fiber density (g/cm?)

[0] yarn packing factor
A; Deformation rigidity of the virtual spring

A Elastic tensile rigidity of weft yarns

n; Elastic compression rigidity of weft yarns

g Strain in fabric along the weft direction

I the generated torque in the unit cell
- Shearing force on weft yarns cross-section in

9 inclined region
o Shearing force on weft yarns cross-section in

§ float region

B; Elastic bending rigidity of weft yarns

d; Diameter of warp yarns (mm)
D4 Sum of warp and weft yarns diameter (mm)
Dy Sum of warp and weft yarns amplitude (mm)
Dy diameter of the virtual spring (mm)

E. Initial tensile modulus of fabric along the weft

; direction

F Tensile force per unit width along the weft

) direction

fi Tensile force per individual weft yarns

Gy Elastic shearing rigidity of weft yarns
he Preliminary estimated value for the weft yarns

0 half inclined amplitude (mm)

h; weft yarns half crimp amplitude (mm)

K Ratio The ratio of discrepancy between D; and D,
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which is allocated to crimp amplitude Strain Energy of Bending
. L .
. Measured value of the total length of yarns in the 9 o
Loy unit cell (mm) Ubj = (1/ 7 B,-) | Mg ds
L Tot i i . g .
i otal length of weft yamns in the unit cell (mm) Strain Energy of Compression
Lg Weft length in float region of the unit cell (mm) Q dj
L Preliminary estimated length of weft yarn in Uccj i (1/2 ) [ f chi dy ds
ocj L . Mj
inclined region (mm) ) 0 70
L. Skewed weft length in inclined region of the unit Strain Energy of Shearing
o cell (mm) Lej
, o - U =(1 % ds
L Length of inclined yarn projection (mm) scj / 2 G}. . j
" Modified incli ; o, .
L' prgj gc‘fonv(iu;)for ihi Lesygnh ok eRRIngA) Feon The Strain Energy in Float Region:
M. Bending force perpendicular to weft yarn axis in Strain Energy of Extension
° inclined region 1 Lgj 5
Mj Bending force perpendicular to weft yarn axis in Ues = ( / 2}\_) ; f T ds
float region ) ) o
N number of helix rings in the virtual spring Strain Energy of Bindmg
fj
P Width of unit cell(mm) 1 2,
. Ubfj = ( /ZB ) Mf- ds
Py Projection of weft yarns float length (mm) j o ]
P Projection of weft yarns inclined length (mm) Strain Energy of Compression
ij dj
Curved length of yarns — 2
@ ot sa=(tn) [ ([ )
Tex Thread linear density (gram/km) . ] 0 -0
Tensile force along weft yarn axis in inclined Strain Energy of Shearing
T . i
region 1 J 5
. - . Ugg ={"/ .|l t*ds
Ty Tensile force along weft yarn axis in float region J 2G; A J
Ur Total Strain Energy in the unit cell
Ug Strain Energy of Extension in the unit cell APPENDIX I
U Strain Energy of Bending in the unit cell yields f;
? ff=FR— =R
Uc Strain Energy of Compression in the unit cell Fj
. o i yields i
Us Strain Energy of Shearing in the unit cell F]- — Ej g g = _J
Up Strain Energy of torque in the unit cell EJ'
U... Strain Energy of Extension in inclined region of fj ZLijSinzej \Y% ZLij sin G]- . COS Gj
ed weft yarns in the half unit cell &j (Strian) = P 3B ) 3B
Strain Energy of bending in inclined region of j j ] )
U gy of bending in inclined region o g AN
bef weft yarns in the half unit cell 1 P (2Lgsin®6;) P v (2L sin®;.cos 8;
) Strain Energy of Compression in inclined region ==F TS E
Ve of weft yarns in the half unit cell Ej P} - 3B ) PJ f]' N 3B;
U Strain Energy of Shearing in inclined region of In an uniaxial loading condition, f; = 0. Therefore
22 weft yarns in the half unit cell 1
U Strain Energy of Extension in float region of weft e
e yarns in the half unit cell E;
Usr Strain Energy of bending in float region of weft 3]
bl yarns in the half unit cell = P (Aj- tan ej)
Uor Strain Energy of Compression in float region of ) 5
< weft yarns in the half unit cell R ( A.)

U Strain Energy of Shearing in float region of weft - — ) : = )
sf yarns in the half unit cell P (2L} cos?8; | L} | 2L -cos?h L0
U Strain Energy of torque in the weft yarns of the 3B; 12B;j 3B; 12B;

A unit cell
The generated force bet of th . :
i uniet f:n RAIGRIIER RS MR SIS O 1SE By some mathematical works, the proposed model is
V. Compressive force on weft yarns curved length in obtained as follows:
9 inclined region
Ve Compressive force on weft yarns curved length in P] A]._ cot 9].
f float region E]- = = 7
! weight fraction of the i component in the PiA)' tan ej A cot©: + Lfi + i
Wi bleneded yarn . ' 12B;  12B;
Y; Spacing between centers of warp yarn (mm)
Where;
3 .
APPENDIX I & = (2L sin 6 cos 6;)
The Strain Energy in inclined Region: i 3B
Strain Energy of Extgnswn (213, sin 6; cos 6;)
1 "2 Ai = 3B
Uecj = ( /27\1-) fo ch ds i
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Therefore by substituting index i instead of j in the above

equations, the initial tensile modulus is obtained as
follows:
B = B 1+ A;. cot 6
ESYY : L2
Fpsyian By Aj.cot 6 +—8- + =L
123, 12B;
APPENDIX IIT

For the second case of modified theory:

F = (f] sin 6, = Vj Ccos 9]). (LCJ + Q])
I =(f sme — vjcos 8;). L. W

Therefore the strain energy required for its deformation
can be calculated as follows:

Upj = (1/2/\].)-13'2

44

By applying the procedure introduced before, the equation
representing the forces between yarns considering the
virtual spring is as Eq. (50).

Z {ZLck (fi cos By + vy sin By). sin By
Ak

k=i

ZL:?:k (fk sin Gk — Vk COS Gk) cos Gk Vg L?f"k

3B, 12B,
8(fy sin By — vy cos By). dy. Qx. cos B
Nk (50)
+ 8Vk. dk' Lfk Z(fk sin Bk — Vg COS Bk) cos Bk. Lck
Nk Gy
2Vk' Lfk
Gy
ZLZka

cos By (fi sin By — vy cos Bk)}

=0
Ay

Since v; = v; = v, this equation can be solved for v which

leads to Eq. (51) in an uniaxial test.

3 L 2
f; cos 0; sin 6;. ( )+fcose sin 9;. (2L>+fcose sin 6;. (2]4;+W‘)+fc059 sin ©;. (—CAM'—)
— )
V= 2L%; .cos26; + i ZLC’ .c0520; _Lf)— " 212, W?Z.cos26; N 2L§j.Wj2.coszej 51
3B; 12B; 3B; 12B; A A;
Uy = (Yo, ) (G sin®; = vjcos ). L. w)? Considering;
The strain energy equation of virtual spring is as follows: ) L. sz
Aj=2L 0; cos ;. +—
Uy = (1/1\.) ((f; sin 8; — v; cos 8;). L. W;)° ojSin 0 cos (38 A )
j
+ (I/Ai) ((f; sin 6 Gives:
— vj cos 6)). L. Wy)?
If the yarns are assumed to be inextensible and
incompressible, so theA , 1 and G tend to infinity, this _ B n Ajcot
leads to the following equation for the strain in the P;(A;) tan 6; Lfl L
. Ajcotb; +
structure: 12B; 1sz

f; o (L W}
& (Strian) :F 212 ;Sin0; 38, +

Y 212..sin O; cos B; E'—+£Jz

Therefore by substituting index i instead of j in the
above equations, the initial tensile modulus in warp
direction can be obtained.



