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Applying Fuzzy Logic Model for Bending Rigidity Evaluation of 
Woven Fabrics

Najmeh Dehghan-Manshadi* and Mohsen Hadizadeh

Abstract- Fabric bending rigidity evaluation plays a very 
important role in determining end-use quality of products. 
This property has a non-linear behavior. Many techniques, 
such as mathematical, multiple regression, artificial neural 
network model, etc., have been used to predict mechanical 
properties of fabrics.  This paper presents a method to model 
the bending rigidity of plain-woven fabrics using fuzzy logic. 
The input variables are yarn count, yarn diameter, yarn 
spacing, yarn bending rigidity and yarn length. The output 
variable is fabric bending rigidity. These results revealed the 
efficiency of fuzzy model to predict bending rigidity based 
on the mentioned parameters. Then the prediction accuracy 
of fuzzy logic model in comparison with three modeling 
methodologies based on mathematical, empirical and 
artificial neural network was evaluated. The comparison of 
the prediction performance showed that the fuzzy model is 
more powerful than the other models.
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I. INTRODUCTION

Fabrics mechanical properties are valuable data for 
product development, quality control and market 

research in textile industry. These mechanical properties 
include tensile, bending, shearing, compression and 
surface properties. In order to make the fabrics one needs 
to understand the correlation between their structural 
geometry and mechanical properties. Several attempts have 
also been made to find out this correlation. One of the fabric 
parameters describing the mechanical properties is the 
bending rigidity. Bending rigidity not only has a decisive 
impact on the handle, tactile comfort and pleat formation of 
clothes, but also plays an important role in draping textile 
materials [1]. The bending rigidity assessment is essential 
for determining quality of fabrics. Peirce, as a pioneer, 
proposed a method for measuring the bending rigidity 

N. Dehghan-Manshadi and M. Hadizadeh
Textile Department, Faculty of Engineering, Yazd University, Yazd, Iran.

Correspondence should be addressed to N. Dehghan Manshadi
e-mail: dehghanmanshadi.n@gmail.com

quantitatively [2]. Abbott compared five testing methods 
including: Peirce’s cantilever test, Peirce’s heart loop test, 
Schiefer flexometer, planoflex and MIT drapeometer, with 
subjective rating of stiffness. He found that the flexural 
rigidity calculated by the cantilever test had a significant 
correlation with the subjective rating [3]. Zhou and Ghosh 
used the non-linear bending behavior of fabrics measured 
by the Kawabata’s evaluation system (KES) for fabric, to 
calculate the shapes of fabric bending curves in loop forms 
and compare with those measured by the cantilever and 
heart loop tests [4]. The studies in literature have shown 
that the relationship between fabric bending rigidity and 
fabric structure is nonlinear. In practice, the tool which is 
used to measure fabrics bending property is the Kawabata’s 
evaluation system (KES) tester [5].

Modeling methodologies are essential to design fabrics 
and predicting their properties.

The modeling and prediction of fabric properties have 
become one of the most important and decisive tasks 
in the textile research field. Several models have been 
used to understand and predict the complex behavior of 
fabrics. There are three distinguished modeling methods 
for predicting the fabric properties, namely mathematical 
models, empirical models and artificial intelligent models.

Mathematical models based on the fundamental 
theories of woven fabrics knowledges often fail to reach 
satisfactory results. They can be used to explain the reasons 
that determine relationships between the fabric structure 
and property [2,6-8].

Empirical models, including statistical methods, are 
based on experimental data. Regression analysis is the 
most common statistical method for estimation of the 
relationship between input variables and output variables. 
This method has the advantage of simplicity in describing 
the quantitative relationship between textile material 
properties. Empirical models are very easy to use and have 
excellent predictive power, only if the coefficient value of 
determination of the model is close to 1 [9-12].

In order to model a nonlinear relationship between 
input and output data, it is possible to devise artificial 
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intelligent models. Artificial intelligent models, such as 
neural networks and fuzzy logic are used to evaluate a 
great number of various engineering applications. Artificial 
neural network (ANN) methods are one of the artificial 
intelligent concepts that have been proved to be useful 
for textile products applications [13-15]. For example, the 
artificial neural network technique is used to model the 
relationship between the yarn properties, fabric parameters 
and weft shear stiffness of worsted fabrics [16]. Predicting 
bending rigidity of woven fabrics from their constructional 
parameters using artificial neural networks, has also been 
developed [17].

Fuzzy logic model has been used in parallel or 
complementarily with the artificial neural networks. 
Fuzzy logic model is one of the most important aspects of 
fuzzy system theory because of its simple form as a tool, 
and its power for predicting nonlinear relations. These 
methods have shown many advantages in characterizing 
some complex concepts related to the evaluation of textile 
products [18,19]. Neuro-Fuzzy model is another similar 
approach that has been used in the textile field [20,21]. 

To explore the predictability of the modeling 
methodologies, Behara and Muttagi have used the published 
data of Leaf and Kandil [8] on fabric initial bending rigidity 
properties. The predictive power of each methodology 
was estimated by comparing the predicted fabric property  
values, obtained from mathematical, empirical and 
artificial neural network, with corresponding experimental 
results in terms of absolute error % of prediction [22]. 
This research has contributed to a better understanding of 
the fabrics bending rigidity, but quantitative prediction of 
this property is still an issue, that needs to be addressed 
to achieve the goal of engineering-based design of fabrics. 
Motivated by the analysis of artificial intelligence method, 
a novel approach is proposed to overcome some drawbacks 
of existing methods. Mathematical models are usually 
based on certain idealized assumptions, so their success 
potential is largely governed by the validity of these 
assumptions. The high error by empirical modeling may 
be due to small data size and inability of the multi-linear 
regression techniques to model the nonlinearities. They do 
not also provide as deep understanding of the relationships 
between the different variables as mathematical models. In 
this respect, artificial intelligence methods, which do not 
need incorporation of any assumptions or simplifications, 
are more efficient. This enables these methodologies to 
overcome the limitations of existing modeling methods. 
These methods also offer potentially great flexibility with 
respect to the ability to approximate a wide variety of 
functions.

The study of fabric bending rigidity can contribute to 

the design process of a fabric; in addition it can predict 
the problems that might arise during the weaving process. 
The bending rigidity deformation of woven fabric is 
very complicated because of the mechanical properties 
arrangement and interaction between its constituent yarns. 
The main objective of many scientific studies in textiles 
is to reveal the functional relationships that exist between 
structural parameters of fiber, yarn and fabric properties. 
The relationship between fabric structure and property is 
complex and inherently nonlinear. Most available methods 
are usually based on certain idealized assumptions, so 
their success potential is largely governed by the viability 
of these assumptions that are difficult to achieve from 
the practical point of view. These models can be used 
to explain the reasons that determine structure property 
relationships. Previous studies have contributed to better 
understanding of this phenomenon, but quantitative 
prediction of this property is still an issue that needs to be 
addressed to achieve the goal of engineering-based design 
of fabrics. Hence, the fuzzy models, which do not need any 
assumptions or simplifications, are more efficient. These 
models enable to overcome the limitations of existing 
modeling methods. Therefore, the proposed fuzzy model 
is to capture the relationship between the model inputs and 
corresponding outputs.

In this study the bending rigidity of a plain-woven 
fabric is predicted using five yarn parameters, extracted 
from previously published data [8], including: warp count, 
yarn diameter, yarn spacing, yarn bending rigidity and yarn 
length in a fuzzy logic model. Then the prediction accuracy 
of the model was evaluated.

A. Fuzzy Logic
The idea of fuzzy logic was first introduced by Zadeh [23]. 
Fuzzy logic can be prescribed as a mathematical model to 
study and define uncertainties. In the fuzzy modeling of a 
process, fuzzy logic is established based on the physical 
properties of a system, observed data, empirical knowledge, 
and so on. A typical fuzzy logic system consists of four 
major components: fuzzification, fuzzy rule base, fuzzy 
inference engine and defuzzification. These main steps 
involved in modeling a fuzzy system are shown in Fig. 1.

The fuzzification converts input data into suitable 
linguistic terms, which may be viewed as labels of the 
fuzzy sets. Each fuzzy set is characterized by appropriate 
membership functions that map each element to a 
membership value between 0 and 1. Membership function 
can have various forms, such as triangle, trapezoid and 
gaussian. A fuzzy rule represents a fuzzy relation between 
two fuzzy sets. It takes a form such as “If X is A then Y is 
B”. A fuzzy rule base contains a set of fuzzy rules, where 
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each rule may have multiple inputs and multiple outputs. 
Fuzzy inference can be realized by using a series of fuzzy 
operations. The defuzzification combines and converts 
linguistic conclusions (fuzzy membership functions) into 
crisp numerical outputs. Depending on the types of fuzzy 
reasoning and fuzzy if-then rules employed, three types of 
fuzzy inference system have been widely used in various 
applications: Mamdani fuzzy models [24], Sugeno fuzzy 
models [25], and Tsukamoto fuzzy models [26]. The output 
of each rule is also a fuzzy set. Output fuzzy sets are then 
assembled into a single fuzzy set. This step is known as 
“aggregation”. Finally, the resulting set is resolved to a 
single output number by defuzzification, such as center of 
gravity, modified center of area, center of sums, and center 
of maximum and mean of maximum.

II. EXPERIMENTAL
The original data for model construction were collected from 
available scientific literature sources [8]. Table I outlines 
the inputs and outputs along with the range of the values 
investigated. In order to apply fuzzy logic for predicting 
fabric bending rigidity, we need to identify: inputs, outputs, 
fuzzification, fuzzy inference, and defuzzification. Yarn 
count (c), yarn diameter (d), yarn spacing (p), yarn bending 

rigidity (B), and yarn length (l) were used to evaluate and 
predict fabric bending rigidity (Bf).

In this study, we use the triangle membership functions 
for the input and output fuzzy sets. The triangular 
membership function is a function of a vector x and depends 
on three scalar parameters a, b, and c, which is defined as 
Eq. (1) (Matlab (7.8.0)). The parameters a and c locate the 
“feet” of the triangle and the parameter b locates the peak.

(1)

In the proposed method, a numerical approximation 
system is used to convert linguistic terms to their 
corresponding fuzzy numbers. The values of each range 
are used to define the triangular membership functions for 
the input variables. Fig. 2 shows the triangular membership 
curves of input variables. Input values were converted to 
four or five fuzzy intervals which have corresponding 
linguistic terms. For example, a set of five terms to 
represent warp yarn length could be given as: very small, 
small, medium, big, and very big (VS, S, M, B, and VB, 
respectively). Each output variable was partitioned into six 
fuzzy intervals. This number of membership functions was 
considered to be the lowest error percentage of prediction. 
Fig. 2 also shows the triangular membership curves for 
predicting fabric bending rigidity in the warp and weft 
directions.

Fuzzy rule base has IF-THEN rules that are defined 
for all the possible combinations of the fuzzy values 
of the linguistic variables involved. Fuzzy rules can be 

Variables Average Minimum Maximum

Inputs

Warp

Count
d1

p1

 l1

β1

Tex
mm
mm
mm

mN.mm2

39.2
0.221
0.459
0.68
3.12

19.7
0.16
0.364
0.509
1.97

60
0.279
0.594
0.835
5.62

Weft

Count
d2

 p2

l2

β2

Tex
mm
mm
mm

mN.mm2

49.6
0.252
0.605
0.489
3.77

19.7
0.16
0.465
0.368
1.97

63.9
0.288
0.756
0.639
6.81

Outputs
Bfwarp

  Bf weft

mN.mm
mN.mm

11.45
12.66

5.92
3.48

28.5
23.49

TABLE I
QUANTITATIVE RANGE OF INPUT AND OUTPUT PARAMETERS FROM 33 FABRICS [8]

Fig. 1. Block diagram of a fuzzy logic model. 0, x a
x a , a x b
b af (x;a, b,c)
c x , b x c
c b

0, c x

≤ 
 − ≤ ≤
 −=  − ≤ ≤
 −
 ≤ 
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extracted from expert knowledge or numerical data. Since 
no expert knowledge was available in the approximation 
of the relationship between output variables and their 
corresponding input variables, the fuzzy rule base of 
this modeling method is a collection of fuzzy IF-THEN 
rules acquired from numerical input-output data. It is 
noted that in the case of rule extraction from data, an 
effective data partition in input–output space can lead 
to reducing the number of rules and thus improving 
the computational efficiency of the fuzzy models. This 
fuzzy rule base was used for fuzzy inference engine. 29 
Fuzzy rules are evaluated simultaneously to determine 
the fabric bending rigidity. Table II shows some of the 
defined rules:
Afterwards, the definition of the fuzzy rule base is 
implemented by using Mamdani’s fuzzy inference method. 
Mamdani’s fuzzy inference method is the most commonly 
applied fuzzy methodology. This method is a type of fuzzy 
inference in which the fuzzy sets from the consequent of 
each rule are combined through the aggregation operator 
and the resulting fuzzy set is defuzzified to yield the output. 
It is necessary to determine fuzzy rules to make apparent 
the effect of relationships between the input membership 
functions and the output results.

Defuzzification converts the resulting fuzzy outputs 
from the fuzzy inference engine to a number. There are 

several defuzzification methods. Centroid, SOM (smallest 
of maximum) MOM (mean of maximum), and LOM 
(largest of maximum) methods were used in this study. 
The centroid method for defuzzification gave the best 
prediction accuracy for fabric bending rigidity. The output 
of this defuzzifier is a number Z*, for the discrete case, 
which defined as Eq. (2) (Matlab (7.8.0)):

(2)

Where, Z* is the defuzzified output value, zi is the output 
value in the ith subset, and μ(zi) is the membership value of 
the output value in the ith subset. For the continuous case, 
the summations in Eq. (2) are replaced by integrals. All the 
input/output data were used for validating the effectiveness 
of the model. The fuzzy logic tool box of Matlab (7.8.0) 
was used in this study.

III. RESULTS AND DISCUSSION
This model was designed to evaluate the fuzzy logic 
model efficiency in predicting the fabrics bending rigidity. 
Therefore, it was necessary to compare the results obtained 
from fuzzy logic with experimental data. Among of studied 
parameters, yarn count, diameter, spacing, bending rigidity, 

 1. If [yarn count is small] and [yarn diameter is small] and [yarn spacing is medium] and [yarn
length is small] and [yarn bending rigidity is very small] then [fabric bending rigidity is b1].
 2. If [yarn count is medium] and [yarn diameter is medium] and [yarn spacing is big] and [yarn
length is medium] and [yarn bending rigidity is very small] then [fabric bending rigidity is b3].
 3. If [yarn count is very big] and [yarn diameter is very big] and [yarn spacing is medium] and
[yarn length is big] and [yarn bending rigidity is medium] then [fabric bending rigidity is b4].

TABLE II
SOME OF THE DEFINED RULES

Fig. 2. Triangular membership curves of input and output variables.
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Fig. 3. An example of fuzzy logic reasoning procedure.

TABLE III
 EXPERIMENTAL AND PREDICTED VALUES OF FABRICS BENDING RIGIDITIES IN WARP AND WEFT DIRECTIONS

Bfwarp (mN.mm) Bfweft  (mN.mm)

Experimental value Predicted value Error% Eperimental value Predicted value Error%

7.76 8.68 11.86 12.32 13.7 11.20

8.64 8.66 0.23 14.76 16 8.40

10.8 8.59 -20.68 23.49 21.7 -7.62

9.88 9.36 -5.26 7.54 7.4 -1.86

8.26 8.72 5.57 17.96 16 -10.91

10.58 10.10 -4.54 20.31 18.1 -10.88

7.02 6.57 -6.41 8.06 8.73 8.31

6.27 6.57 4.78 4.56 4.59 0.66

6.36 6.60 3.77 6.09 6.16 1.15

6.34 6.57 3.63 4.38 4.6 5.02

9.3 8.52 -8.39 3.48 4.61 32.47

9.48 9.45 -0.32 9.41 8.74 -7.12

7.11 6.59 -7.31 9.25 8.74 -5.51

6.21 6.60 6.28 6.16 7.22 17.21

5.92 6.61 11.66 8.17 8.74 6.98

6.23 6.62 6.26 15.64 16 2.30

7.32 6.62 -9.56 16.99 16 -5.83

6.28 8.53 35.83 6.88 7.39 7.41

9.12 8.57 -6.03 14.37 11.9 -17.19

9.43 8.52 -9.65 7.85 7.41 -5.61

9.54 8.53 -10.59 13.33 13.7 2.78

9.68 8.52 -11.98 9.79 11.3 15.42

19.59 18.90 -3.52 22.09 21.8 -1.31

18.48 18.90 2.27 20.55 21.7 5.60

20.45 20.70 1.22 22.5 21.8 -3.11

17.25 16.70 -3.19 20.25 16 -20.99

18.25 16.70 -8.49 19.62 17.8 -9.28
28.5 16.70 -41.40 16 17.8 11.25
14 14.80 5.71 13.06 13.7 4.90

16.47 16.70 1.40 13.68 13.7 0.15

20.5 17.70 -13.66 12 12 0.00

15.2 16.70 9.87 10 12 20.00

11.6 12.50 7.76 7.36 7.38 0.27

Mean absolute error % 8.76 Mean absolute error % 8.14
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and length are the main parameters influencing the fabric 
bending rigidity.

We applied the triangular membership function due to 
its better performance. Fuzzy rule base contains rules that 
include all possible fuzzy relations between inputs and 
outputs. The performance of a fuzzy rule base depends 
not only on the input variable selections but also on the 
generation of fuzzy rules. We constructed the Mamdani-
type fuzzy rules, relating input variables to the output 
variable. The product and centroid methods were employed 
as the inference operator and defuzzification methods, 
respectively. For testing the model, the input values were 
fed into the fuzzy logic model and the output values were 
compared with the targeted output (obtained from Leaf’s 
experimental data). With this model, an example is given to 
illustrate the reasoning procedure of fuzzy logic. As shown 
in Fig. 3, the yarn count, yarn diameter, yarn spacing, yarn 
length, and yarn bending rigidity equals 60 Tex, 0.279 mm, 
0.485 mm, 0.835 mm, and 5.62 mN.mm2, respectively. 
The output, fabric bending rigidity in the warp direction is  
20.7 mN.mm.

The error percentage of prediction was calculated using 

the Eq. (3): 

(3)

Where, and are predicted and experimental values, 
respectively. The mean absolute error (MAE) values were 
computed for the model. The experimental and predicted 
values of bending rigidities in warp and weft directions 
of the sample fabrics are given in Table III. The mean 
prediction error percentages for fabric bending rigidity are 
8.76% and 8.14% in warp and weft directions, respectively. 
The correlations between the experimental and predicted 
values of these two bending rigidities of the fabrics are 
shown in Fig. 4. As can be seen, there is a good relationship 
between these values.

In order to comparing prediction error of proposed 
model with the former presented models (Table IV), in this 
study we applied the only 7 parameters from 33 mentioned 
data, that had been used for other modeling methods 
according to previous works [22].

Table V indicates that the prediction errors of fabric 
bending rigidity in the warp direction are 12.9%, 11.15%, 
and 8.79% for mathematical, empirical, and artificial neural 
network models, respectively. Fuzzy model produces the 
least error of 7.87% comparing to the other three models. 
Also, Table V shows an error of 5.40% for prediction of 
fabric bending rigidity in the weft direction. As shown 
in Table V, fuzzy logic model has a lower prediction 
error in the weft direction too. Therefore, this paper 
developed a fuzzy model which provides an easy way to 
predict bending rigidity of woven fabrics. This property 
is not only complicated but also has nonlinear behavior. 
This method is evaluated on the basis of constructional 
parameters and it can be observed that its predictive errors 
and the range of errors are very low. Moreover, unlike most 
available methods, these methods do not need predefined 

Model

Mathematical

Empirical

Artificial neural
network

Radial basis function (RBF)

warp 1 2 1 2 1 1

weft 2 1 2 1 2 2

Bf p p [p (1 c ) 0.8758D ]

Bf p p [p (1 c ) 1.0778D ]

= b ÷ − − θ

= b ÷ − − θ

warp 1 2 1

2 1 2 1

2 1 2
2

weft 1 2 1

2

Bf 69.363 d ( 385.299) d ( 181.981) l ( 13.631)

l (232.493) p ( 289.970) p (24.084) tex (1.529)
tex (0.491) ( 0.703) (1.336)

R 0.842
Bf 18.916 d (300.38) d ( 438.798) l (132.455)

l (159.367)

= + − + − + −

+ − + +
+ +b − +b

=
= + + − +

+ 1 2 1

2 1 2
2

p ( 174.684) p ( 137.467) tex ( 0.798)
tex (1.137) ( 0.334) (2.425)

R 0.903

− + − + −
+ +b − +b

=

TABLE IV
 THREE MODELING METHODOLOGIES [22]

(b)
Fig. 4. Correlation of experimental and predicted values of fabrics 
bending rigidities.

(a)

i i

i

y yError (%) 100
y

′−
= ×

′
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mathematical equations of the relationship between the 
model inputs and corresponding outputs, and use the data 
alone to determine the structure of the model and unknown 
model parameters.

IV. CONCLUSION
In this research we have introduced a model based on fuzzy 
logic to predict the bending rigidity of woven fabrics. 
Bending rigidity of woven fabrics can be effectively 
calculated with this model. Fuzzy logic model is powerful 
to solve non-linear problem and it is a cheap and easy-to-
use system.We found that prediction performance was best 
for fuzzy logic model in comparison with mathematical, 
empirical and neural network models. Consequently, fuzzy 
logic could be used as a useful modeling tool for engineers 
and researchers to predict fabrics mechanical properties. 
There was no hybrid fuzzy-neural network system to 
predict the bending rigidity of woven fabrics. However, 
Fuzzy-neural computing systems can be a future research 
direction in this area.
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