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An Investigation of Structural-Mechanical Properties of  
Spun-Bonded Non-Woven Using Computer Vision Method

Mina Emadi, Mohammad Ali Tavanaie*, and Pedram Payvandy

Abstract- This paper aims at the measurement of surface 
uniformity, thermally-bonded points, distribution of fibers 
orientation and local displacement in tensile testing for spun-
bonded nonwoven polypropylene fabrics. For this purpose, 
an image processing method was used to produce clustered 
images based on the k-means clustering algorithm along with 
Davies-Bouldin index and the PSNR image quality evaluation 
method. Then, the quadrant method for surface uniformity, 
an image processing method based on morphological 
operators for uniformity of thermally-bonded points, the 
regionprops function (RF) method for distribution of fiber 
orientation and the digital image correlation (DIC) method 
for local displacement were used to calculate the parameters 
of nonwoven samples. Also, the relationships between image 
processing and the experimental results of tensile tests were 
studied. The results indicated that the structural properties 
of a fabric, such as surface uniformity, bonded structure, 
distribution of fiber orientation and critical points, have great 
impacts on its tensile properties at the selected weights and 
non-uniformity levels. Hence, a sample with a higher level of 
uniformity and, consequently, more regular bonding points 
with a higher bonding percentage, better distribution of 
fiber orientation and less critical points offers the best tensile 
properties.

Keywords: image processing, k-means clustering, regionprops 
function, digital image correlation, tensile properties, spun-
bonded non-woven fabric

I. INTRODUCTION

In recent years, the application of computer vision 
technology in the textile industry has increased 

significantly. Nowadays, indeed, the technique is applied 
for various purposes, such as size assessment, calibration, 
transportation, production quality enhancement, inspection, 
grading, sorting, and separation. Determination of fabric 
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properties and online controls, such as control of web 
uniformity [1], defects [2], fiber diameter [3], and fiber 
orientation [4] are among the tasks that image processing 
systems can take over. This wide range of applications is due 
to the fact that computer vision systems provide significant 
amounts of information about the nature or attributes of 
scene analyses. Furthermore, this technology makes it 
possible to study scenes in regions where the human eye 
is not sensitive enough. Determining the properties of non-
woven plays a substantial role in the extensive use of these 
fabrics for new applications. Since the term ‘uniformity’ 
is defined as an index of variation in such aspects as fiber 
orientation, weight, thickness, density, and fiber diameter, 
the constancy or inconstancy of the measured values of 
these features in different locations of a non-woven web 
can be referred to as ‘uniformity’ or ‘non-uniformity’.

There is a lot of research on the non-woven uniformity 
based on online measurements. Some researchers have 
used optical methods to evaluate changes in the basic 
weight. Veerabadran et al. examined a technique in which 
images and their optical densities were used to provide 
a uniformity index [5]. A similar trend was pursued by 
Boeckerman. In his study, the non-woven fabrics were 
subjected to a transmitted light, a camera recorded the 
image intensity, and the sample optical density was related 
to the web weight [6]. In such techniques, the uniformity 
index is calculated by using the coefficient of variation 
(CV%) of the optical density, and measurements on various 
scales offer different indicators. Lien et al. used optical 
intensity for online basic weight assessment, which, like 
other studies, it had an inherent problem in that it relied on 
size [7]. To determine the level of non-uniformity, wavelet 
analysis and LVQ neural network [8], Bayesian [9], and 
the generalized Gaussian density model [10] were used. 
One of the studies to defeat the size reliance impediments 
in the coefficient of variation (CV%) analysis has been 
done by Pourdeyhimi et al. who defined a uniformity index 
by combined image processing and the quadrant method 
[11]. Amir Nasr et al. conducted a study to measure the 
uniformity of non-wovens with the known quadrant method 
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[12]. In studies by Nohut et al. [13] and Taskan et al.[14], 
digital image analysis and artificial neural network were 
used to predict the weight, tensile strength and elongation 
at the break values of the polypropylene non-woven fabrics 
with various weights.

Many studies confirm that fiber orientation extremely 
influences the properties of textile products. For example, 
Maoa et al. [15] pointed that fiber orientation is a main 
factor influencing non-woven anisotropy. Murugan and 
Ramakrishna [16] showed that the orientation of fibers 
is one of the most important features of a perfect tissue 
scaffold made of nanofibers. Accordingly, measurement 
of fiber orientation is an important part of quantitative 
measurements in the field of textiles. In this context, one 
can refer to a specially influencing series of papers by 
Pourdeyhimi et al. [17-22] dedicated to measuring fiber 
orientations. Also, Tunák et al. [23] focused on estimating 
the fiber orientation of nano-fibrous and nonwoven layers. 
They studied four methods, including rose of directions, 
spectral approach, moment approach, and a combination 
of spectral and moment approaches for estimation of fibers 
orientation. The results indicated that the proposed method 
can be effectively used to estimate the directional orientation 
of fibrous textile materials in terms of their homogeneity, 
eventual defects, random violation of regularity of the 
structure, etc. Stolyarov et al. [24] studied an analysis system 
to evaluate fiber orientations in nonwoven structures and 
to establish the relationship between the structure and the 
mechanical behavior of nonwoven fabrics. In their study, 
an interpretation was provided of the fiber deformation 
mechanism in the internal structure of nonwoven fabrics, 
and a coefficient of anisotropy was proposed for the internal 
structure of nonwoven materials under tension.

Measuring the surface deformation of structures 
subjected to mechanical loadings is an important task of 
mechanics. One of the most commonly used powerful and 
flexible tools for surface deformation measurement is digital 
image correlation (DIC). It directly provides full-field 
displacements and strains by comparing the digital images 
of the specimen surface in non-deformed (or reference) and 
deformed states, respectively.  During recent years, the DIC 
method has been widely studied and improved to achieve 
high accuracy in deformation measurements. Peters et al. 
[25] studied the digital image correlation (DIC) technique 
commonly used in experiments as an effective tool for 
full-field deformation measurements. Furthermore, Zhou 
et al. [26] suggested that the DIC method is easy to use 
and can provide suitable resolution of displacement and 
strain fields. According to Koerber et al. [27], the DIC 
technique can be used for quasi-static and high strain rate 
experiments in order to obtain the in-plane strain field over 

the entire surface of a specimen. Finally, Pierron et al. 
[28] used a high-speed camera in a high-strain-rate test, in 
which sample deformation was tested and the field method 
of a 3-point bending was evaluated. 

In this study, we have evaluated the overall surface 
uniformity of different samples using the quadrant method. 
The k-means clustering method is applied to produce 
binary images. Also, proposed image processing methods 
are used to calculate the uniformity of thermally-bonded 
points. The fiber orientation distribution is measured by 
regionprops function and the local displacement during 
tensile testing is evaluated by digital image correlation 
method. It is attempted to achieve an interaction between 
the tensile properties of non-woven fabrics and the non-
woven dispersion indexes. To reach this end, the tensile 
properties of the non-woven samples are measured, and then 
the experimental data are compared with the data obtained 
from the image processing method. In textile factories, 
strength measurement is usually done offline. Choosing this 
technique is effective because image processing systems 
can be applied to determine a uniformity index quickly 
and to do calculations fast and efficiently. This makes it 
significant to develop a technique for online applications. 
Applying the image processing method in online quality 
control is a very useful and effective method that can help 
the owners of factories to save time and money. Noticing 
a variation in the quality of a product, one can find out 
the lack of uniformity. It leads to quick corrections in the 
production line and, thus, prevention of large amounts of 
shoddy products.

II. EXPERIMENTAL
A. Materials
Two sets of thermally bonded non-woven fabric were 
taken directly from a roll of a factory polypropylene 
fabric. Samples were prepared by changing degree of fiber 
dispersion, which led to different uniformity levels (poor-
medium–good) and two different weights (15 g/m2, 30 g/m2). 
The bonding temperature was 165 °C, the nip pressure was 
varied from 3 kg/cm2 to 3.2 kg/cm2 for two types of the 
samples, and production speed of the samples was 40 m/min.  
The samples were cut from different stances of the web and 
then weighted. The average weight and thickness (ASTM 
D5729) of 10 specimens and the CV% for each fabric type 
are presented in Table I.

B. Methods 
B.1. Tensile Test 
For analysis of the mechanical properties of non-woven 
fabrics, 10 specimens were selected from each sample 
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(Table I). The stress and strain at peak were tested according 
to the standard ASTM D5034 using a tensile strength tester 
(INSTRON). The measuring conditions were as follows: 
the speed of the clamps 150 mm/s, distance between 
the clamps of the tensile strength tester 150 mm and 
temperature 20±2 °C, Rh 50±5%.

B.2. Image Processing
A scanner with a resolution of 2400 dpi was used to 
obtain images of the structure of non-woven fabrics. The 
advantage of using the scanner in obtaining fabric images is 
that it has a high depth of field even at high magnifications. 
Using scanner, more fibers in the fabric are focused and 
included in the image compared with other methods. For 
this imaging method, a black screen was placed behind 
the samples and all the image dimensions were limited 
to 10×15 cm2. Three levels of the non-woven samples 
uniformity are shown in Fig. 1.

B.3. Surface Uniformity Measurement
For surface uniformity measurement, the color images of 
the samples were converted into grayscales and, afterward, 
a thresholding operation was done. The k-means clustering 
method was applied to convert color images to grey 
scales, and then black-and-white ones [29]. In addition, 
the  Davies-Bouldin index was used for cluster validation 
[30]. The non-woven sample images were divided into 3-6 
intensities or clusters. The k-means clustering method was 

performed 10 times for each image, and, then, the best one 
among 10 clusterings was selected using Davies-Bouldin 
index. After converting the best of clustered images to a 
binary image and making four binary images, the PSNR 
index was applied to choose the best binary image [31]. 
After thresholding, the quadrant method was applied on 
each input image to assess the surface dispersion index 
of the non-woven samples. In the quadrant method, the 
image was divided into squares and analyzed. The average 
number of white pixels in a square, the total average of 
white pixels as the average value of the fiber fraction in 
surface, the standard deviation of them, and their dispersion 
index were calculated. The surface dispersion index was 
calculated by the average number of white pixels and used 
as a criterion to determine the surface uniformity of the 
non-woven fabrics.

B.4. Thermally-Bonded Points Uniformity Measurement
For measuring the uniformity of thermally-bonded point, 
the color images were converted into grayscales. The bit 
plane slicing was applied to those grayscales to take out 
the best bit plane, which contains more visual information 
of the thermally-bonded points. The highest-order planes 
contain a great deal of valuable visual data, while the 
lower-order planes include finer details of the image. So, 
a bit plane which provides more visual information of the 
thermally-bonded points was selected. This plane was 
used as a selected binary image for further analysis. In 

Fig. 1. Three levels of 15 g/m2 samples uniformity: (a) sample with the highest uniformity, (b) sample with the medium uniformity, and (c) sample with the 
lowest uniformity.

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

Uniformity degree Good Medium Poor Good Medium Poor

Average weight (g/m2)
(CV%)

15.653
 (3.15)

15.690
(5.27)

 15.801
(5.37)

 30.427
(3.88)

 32.861
(5.56)

 31.934
(9.22)

Average thickness (mm)
(CV%)

 0.161
(7.24)

 0.206
(8.39)

 0.207
(9.15)

0.270
(2.94)

 0.314
(11.3)

 0.317
(22.88)

TABLE I
AVERAGE WEIGHT, THICKNESS AND CV% OF THERMALLY-BONDED NON-WOVEN POLYPROPYLENE
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the next step, the negative binary image of the bit plane 
was created and exposed to opening and closing functions 
as well as median filtering so as to remove undesirable 
details. Finally, the thermally-bonded points were visible 
as white objects on a black background in the final binary 
image. The area of each bonding point, the percentage of 
the bonded area and the average area of bonding points 
were calculated. Then, the dispersion index of the bonding 
points area (Id) which presents the amount of dispersion 
of the bonding points area was calculated to evaluate the 
uniformity of the bonding points.

B.5. Fiber Orientation Measurement 
After thresholding and conversion of the non-woven images 
to black and white through k-means clustering, the images 
were used to measure the distribution of fiber orientation. 
A MATLAB image processing toolbox was provided for 
the regionprops image analysis. Generally, the regionprops 
function (RF) method is used to extract the feature of ellipse 
regions in an image of function, especially to characterize 
the orientation of the ellipse regions. In this technique, a 
scalar is specified to the angle between the x-axis and the 
major axis of the ellipse to measure fiber orientation. The 
value is in degrees, ranging from -90 degrees to 90 degrees. 
Fig. 2 illustrates the axes and orientation of an ellipse. 
The left side of the figure shows an image region and its 
corresponding ellipse. On the right side, the same ellipse 
is shown with solid lines representing the axes, the dots 
are the foci, and the orientation is the angle between the 
horizontal dotted line and the major axis. 

B.6. Local Displacement Measurement During Tensile 
Testing 
The displacement of different locations in the non-woven 
sample during tensile testing was calculated by the digital 
image correlation (DIC) method [32] based on the local 
displacements detected in a series of consecutive images 
obtained in different states, one before deformation and 
the others after deformation. Surface patterns on the test 
specimen are essential for this technique. In order to create a 

characteristic pattern on the specimen surface, black dots 
were deposited regularly on the surface background. The 
specimens were fixed to a mechanical testing machine in 
conditions similar to those of tensile testing. Tensile testing 
was done, and a sequence of images was taken by a high 
speed camera. The images were given to the MATLAB 
software to implement the DIC method, and the local 
displacement of the marked points was calculated (Fig. 3).

III. RESULTS AND DISCUSSION
A. Thresholding Results
Typical thresholding is one of the most common methods 
that can be applied when the pixel intensity distribution of 
objects differs from that of the background. The background 
in the non-woven sample images with different intensities 
is not clear and distinct. Thus, the process of turning them 
into binary images through typical thresholding can destroy 
a lot of details.  One thing that can overcome this limitation 
is the k-means clustering method. After converting the 
best of 3-6 clustered images to binary ones and making 
four binary images, 4 clusters were selected as the best 
number of clusters with the highest PSNR indices. The 
thresholding images for S15-3 sample are shown in Fig. 4. 
The PSNR and Davies-Bouldin index values for 4 clusters 
are presented in Table II. The binary image obtained from 
the clustering method was selected for future analysis.

B. Surface Uniformity Results
The non-woven samples were cut into the sizes shown in 
Table III and then were weighed. The weight dispersion 
index values were calculated to verify the data 
obtained from the image processing method (quadrant 
method). Two dispersion index values were obtained 

Fig. 2. Fiber orientation measurement by regionprops function (RF).

Fig. 3. Local displacement measurement during tensile testing.
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from the image processing method and weighing. The 
corresponding correlation coefficients are presented in 
Table III. As it can be seen, the correlation coefficient 
values for all the samples are higher than 0.95. Generally, 
a correlation coefficient shows the relationship between 
two variables. So, coefficient values greater than 0.95 

show a strong and positive relationship between the 
image processing and the weighing methods. The results 
of the image processing method were well correlated 
with the weighing results. They were also compatible 
with the degree of sample visual uniformity. Therefore, 
it is realized that, in each group with the same weighted 

             (Original image)    (Clustered image)            (Binary image after clustering)

Fig. 4. Thresholding operations for S15-3 sample.

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

PSNR 6.6296 6.9211 7.2438 8.3098 8.1069 9.1187

DB 0.4153 0.4330 0.4422 0.4469 0.4522 0.4352

TABLE II
PSNR AND DAVIES-BOULDIN INDEX VALUES FOR 4 CLUSTERS

Size of squares (cm2) S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

 Image processing
 surface dispersion

index

5×5 0.0134 ×10-2 0.3467 ×10-2 0.2075 ×10-2 0.0053 ×10-2 0.0378 ×10-2 0.1757 ×10-2

2.5×2.5 0.1646 ×10-2 0.4406 ×10-2 0.3313 ×10-2 0.0128 ×10-2 0.0532 ×10-2 0.2982 ×10-2

1.25×1.25 0.3041 ×10-2 0.5682 ×10-2 0.7182 ×10-2 0.0215 ×10-2 0.0712 ×10-2 0.4159 ×10-2

 Weighting dispersion
index

5×5 0.0188 0.0614 0.1333 0.1291 0.7867 1.0112

2.5×2.5 0.0592 0.1055 0.1922 0.2036 1.0190 1.6223

1.25×1.25 0.1388 0.2882 0.3242 0.5788 1.6172 2.3254

Correlation coefficient 0.9704 0.9639 0.9957 0.9972 0.9595 0.9973

TABLE III
SURFACE DISPERSION INDEX OF QUADRANT METHOD AND WEIGHING AND THEIR CORRELATION COEFFICIENTS

                    (Original image)    (The 6th bit-plane)  (Final image)

Fig. 5. Bonding points extraction.
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average, the lower degree of sample surface uniformity 
causes the higher dispersion index. It seems that the 
quadrant method is an appropriate method to determine 
the surface uniformity of the non-woven fabrics. The 
similar results were presented in the Nohut et al. [13] 
and Taskan et al. [14] studies.

C. Thermally-Bonded Points Uniformity Results
As Fig. 5 shows, the 6th bit plane, compared to the other 
bit planes, reveals the best information about the thermally-
bonded points. So, it could be used as a selected binary 
image for subsequent analyses. The final image is a binary 
image in which the thermally-bonded points are visible as 

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

Bonding average area (mm2) 0.3023 0.2424 0.2190 0.3642 0.3403 0.1475

Bonding dispersion index 1.2456 3.0454 7.7126 1.2626 2.1874 4.7308

Bonding percentage (%) 13.0093 10.9609 8.8300 18.4674 15.9942 7.0715

TABLE IV
 PARAMETERS OF THERMALLY-BONDED POINTS OBTAINED FROM THE IMAGE PROCESSING METHOD

Fig. 6. Fiber orientation distribution.

S30-1S15-1

S15-2

S15-3 S30-3

S30-2
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white objects on a black background (Fig. 5). The measured 
values of the bonding average area, the bonding dispersion 
index, and their percentages by the image processing 
method are presented in Table IV. 

A weight gains of 15 g to 30 g in the two samples S30-1  
and S15-1 increased the quantity of fibers per area unit 
and the web density. It can be claimed that, by increasing 
the web covering, the bonding calendar affected more 
fibers, and, therefore, every bonded point was closer to 
the bonding pattern. The values for the bonding average 
area, presented in Table IV, are suggestive of this matter. 
However, in a group with the same weighted average and 
the different degrees of uniformity, a decrease in the surface 
uniformity led to a reduction in the bonding average area. In 
other words, with a decrease in the surface uniformity, the 
possibility of existing empty pores in some areas of the web 

is increased. So, when a non-woven web is placed under 
a thermal bonding calendar, some of the calendar bumps 
occur in the empty pores. This prevents the formation of 
bonding points, and, even if they are formed, they will be 
sketchy. It also reduces the bonding average area and the 
bonding percentage, which, in consequence, affects the 
relevant statistical indicators. All this leads to the reduced 
possibility of forming uniform bonding points, which in 
this regard is confirmed by the presented dispersion index. 
To sum up, the lower bonding uniformity, the lower surface 
uniformity, thus, the higher bonding dispersion index.

D. Fiber Orientation Results 
The results for RF method are presented in Fig. 6. It appears 
that, in each group with the same weighted average, the 
distribution of fibers orientation is better in samples with 

Fig. 7.  Sequence images of S15-3 sample during tensile testing.

              t=0        t=1 s       t=2 s               t=3 s          t=4 s

            t=5 s        t=6 s       t=7 s               t=8 s          t=9 s

          t=10 s        t=11 s  t=12 s              t=13 s         t=14 s

           t=15 s       t=16 s  t=17 s             t=18 s         t=19 s
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more uniformity. 
The fibers are also distributed at various angles rather 

than being highly oriented in a specific direction. This 
is consistent with the results gained through actual 
observation. However, for a sample with more non-
uniformity, the fibers are not distributed at various angles 
and are oriented in a certain direction. As it is clearly shown 
in the charts, the frequency is the highest at some angles. 
The original pictures suggest that the results derived from 
RF to characterize the orientation match the findings 
coming through practical observation.

E. Local Displacement Results During Tensile Testing
The sequence images of sample S15-3 during tensile 
testing are presented in Fig. 7, and the 3D charts of local 
displacement for the marked dots are shown in Fig. 8. Many 
structural parameters affect the fabric tensile properties. 
During the tensile testing of non-woven samples, the 
breaks began at critical points, such as weak link points, 
non-uniform surface and etc. The probability of critical 
points in a non-uniform sample is very high. Therefore, the 
tensile strength will be less, and the breaks happen at the 

critical point. In the final images of Fig. 9, it is clear that 
a break leads to the local displacement of some marked 
dots, and that occurs in 17 s to 19 s. These displacements 
appear as peaks within the same number of seconds as in 
the 3D chart (Fig. 8). These results hold true for all sample 
cases. In the present study, it was observed that, in each 
group with the same weighted average, for a sample with 
further surface uniformity, the local displacements of the 
marked dots were equal. Also, there were no critical points 
for breaks and no peak in the 3D charts. Conversely, in a 
sample with the lowest surface uniformity, there were more 
critical points for tension concentration. So, the breaks 
happened faster, and the displacement charts had several 
peaks. 

F. Tensile Testing Results
A tensile test and the stress and strain at peak were 
conducted to investigate the effects of surface uniformity, 
bonding uniformity, and fiber orientation on the tensile 
properties of the samples. The mean stress-strain curves as 
well as the stress and strain at peak for 10 specimens of 
each sample are presented in Fig. 9. 

Fig. 8. 3D Chart for local displacement during tensile testing.



EMADI ET AL.: AN INVESTIGATION OF STRUCTURAL-MECHANICAL PROPERTIES OF ...           11

According to Fig. 9, in each group of samples with 
the same weighted average, a sample with the further 
uniformity shows higher stress and strain. By comparing 
the presented coefficients of variation (CV%) for stress 
and strain at peak, it emerges that, for a sample with more 
weight, the CV% value is lower. It can be claimed that, 
with an increase in the weight, the possibility of the surface 
uniformity and the uniformity of thermally-bonded points 
is increased, and, consequently, the dispersion of tensile 
properties is reduced. On the other hand, in each group of 
samples with the same weighted average, it seems obvious 
for a sample with a medium surface uniformity to have a 
higher CV% value than a sample with the highest surface 
uniformity. However, a sample with the lowest surface 
uniformity has a lower CV% value than a sample with 
a medium uniformity. It may be because these samples 
have an extreme non-uniformity in their structures and 
are broken fast in a certain period of time, which makes 
the CV% values of these samples lower than those of the 
samples with a medium uniformity. Samples with a poor 
surface uniformity have a brittle mode and a very low 

elongation-at-break. The important issue is the downtrend 
of stress and strain in each weighting group, which is 
consistent well with the degree of samples uniformity. 

In general, it can be concluded that the surface dispersion 
index and the bonding dispersion index are increased in 
each weighting group, but the percentage of bonding and 
the stress and strain-at-peak are decreased in pace with a 
decrease in the degree of the surface uniformity dispersion 
index and the orientation distribution. A sample which 
presents poor results during tensile testing and proves to 
have the worst structural and bonding properties in the 
image processing method has the worst tensile properties. 
This suggests that tensile properties are lower in the case 
of less surface uniformity, fewer bonding structures, worse 
orientation and more critical points.

IV. CONCLUSION
Due to the lack of an affordable online method for measuring 
the uniformity of non-woven fabrics, this paper has aimed 
at, whether a digital imaging processing system can be 
used to measure non-woven structural characteristics and 
to estimate tensile properties. We have investigated surface 
uniformity by the quadrant method (i.e. a method devised 
for evaluation of surface uniformity). The results indicate 
that a scanner can be used to measure the surface uniformity 
for non-woven polypropylene fabrics at web weights 
ranging from 15 g/m2 to 30 g/m2. In the image processing 
of the bonding points uniformity, it was observed that a 
sample with a higher surface uniformity has a lower 
bonding dispersion index, a higher bonding average area, 
and a higher bonded zones percentage. The distribution of 
fiber orientation was evaluated using regionprops function 
method, and it was indicated that the samples with more 
uniformity have a better fiber orientation distribution. In 
the digital image correlation of sequence images during 
tensile testing, it was observed that, in each group with the 
same weighted average, for a sample with further surface 
uniformity, the marked dots were equal in terms of their 
local displacement. Also, there were no critical points for 
breaks and no peak in the 3D charts. Conversely, in the 
sample with the lowest surface uniformity, there were 
more critical points for tension concentration, the breaks 
happened faster, and the displacement charts had several 
peaks. The stress and strain at peak were decreased by a 
decrease in the degree of uniformity. In stress and strain 
measurements, it was found that, for a sample with more 
weight, the CV% value is lower, and a sample with a 
medium surface uniformity has a higher CV% value than 
a sample with the highest surface uniformity. However, a 
sample with the lowest uniformity has a lower CV% value 
than a sample with a medium uniformity. Less uniformity 

Fig. 9. Mean stress-strain curves.
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or a worse bonding structure would mean more critical 
points for tension concentration, a bad fiber orientation 
and, therefore, lower tensile properties. This is a significant 
point that needs to be considered when adjusting a technique 
for an on-line application. By changing the product, the 
lack of uniformity, if any, is recognized, and corrections 
are made on the production line quickly. This is how large 
production of shoddy products can be prevented. Applying 
the image processing method to online quality control is a 
very useful and effective method that can help the owners 
of factories to save time and money on quality control.
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