JOURNAL OF TEXTILES AND POLYMERS, VOL. 1, NO. 2, JUNE 2013

91

Prediction of Random-Velour Needle Punching Force
Using Artificial Neural Network

Hasan Mashroteh, Mohammad Zarrebini and Darush Semnani

Abstract—Random-velour needling technology is a
modified version of conventional needling process. Properties
of the random-velour needled fabric are controlled by the
structural alteration that occurs during random-velour
needling, is due to re-orientation of fibers within the pre-
consolidated fibrous assembly by special fork needles. This
interaction results in creation of a dual structure, comprising
base and pile layers. In this work the effect of needling
parameters and fiber characteristics on force exerted on the
fork needle was investigated. The effect of principal
parameters on total average force "F,," exerted on
individual fork needle was determined using an Artificial
Neural Network (ANN) modeling and the error percentage of
absolute average of predicted tests data was also calculated.
Significance percentages of input parameters on "F rms | Was
indicative of the similar influence of fiber characteristics and
needling parameters on "F,,". Results manifested the
importance of punch density and barbed needle penetration
depth during initial consolidating needle-felting operation.
Result of the neural network assessment testified that the
network in general was capable of mapping input and output
parameters.

Key words: Random-velour, punching force, fibrous
assembly, needle, artificial neural network, modeling.

I. INTRODUCTION

RANDOM-VELOUR needled fabrics are produced by a
modified needling operation on a machine depicted in
Figure 1(a) known as random-velour needle loom.
Moveable brush conveyor and structuring fork needles
have replaced the conventional lamella bed-plate and
barbed needles employed on conventional felting needle
looms depicted in Figure 1(b) respectively. Figure 2 shows
both types of needles.

Properties of the final velour fabric are controlled by the
structural alteration that takes place during random-velour
needling operation. The fork needles not only serve as the
principal element in occurrence of the structural
alterations, but also both transmit and influence the
penetration forces that eventually have to be absorbed by
the main frame of the loom [1-3]. Therefore, interaction of
fork needle and fibers results in re-orientation of fibers
within the initial pre-consolidated fibrous assembly which
in turn leads to fundamental structural alteration in terms
of creation of a dual structure comprising base and pile
layers.
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In the present work, a purposely designed force
measuring system [4-5] has been used to measure forces
exerted on the individual fork needle during random-velour
needling in relation to fibrous assembly characteristics and
needling parameters. All previous studies in the field of
needle punching force measurement are limited to the
effect of fiber and needle loom related parameters during
conventional needle-felting process using barbed needles
and so far no study in relation to forces experienced by

fork needles has been reported.
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Fig. 1. Needle looms, a) random-velour loom, b) conventional felting
loom.

Hearle et al. in their pioneering work found that,
increase in parameters such as mass of fibrous assembly,
fiber coefficient of friction and needle penetration depth,
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leads to corresponding increase in magnitude of statically
measured force exerted on barbed needles of a fully
needled needle-board [6]. It was also reported that, in case
of heavy fibrous assembly, increase in needle penetration
depth results in excessive fiber breakage during needling
which in turn tends to reduce the penetration force on the
needle. It was confirmed that, dynamically measured
punching force on single needle decreases after an initial
increase as mass of fibrous assembly increases [7].
Goswami used a laboratory needle loom and reported that,
fiber fineness and crimp are the pivotal factors among
parameters affecting the static force experienced by the
needles of a fully needled needle-board [8].

(2) (®)

Fig. 2. Needles, a) conventional barbed needle, b) structuring fork needle.

Sarin in his 1994 review of pertained researches
reported that according to Luenenschloss's studies, total
forces exerted on barbed needles of a fully needled needle-
board are directly proportional to stroke frequency of the
needle board [9]. Seyam studies was concerned with the
cumulative contributions of various factors such as needle
vibration and inertia on the dynamically measured force
experienced by individual barbed needle. Seyam was also
successful in determining the location of the needle
subjected to the highest force in relation to variation in
fiber staple length and amount of punch density [10-14].

Cislo investigations showed that, quasi-static force on
the barbed needle increases as both fineness and tensile
strength of fiber are increased [15]. Kapusta has concluded
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that, at very high needling stroke frequency, force
experienced by barbed needle decreases. This was
considered to be due to excessive fibre breakage and
process generated heat [16]. Watanabe showed that
provided both needling and fiber related parameters are
held invariant, then the force exerted on the needle
increases with increases in geometry of barb parameters
[17].

Advances in Artificial Neural Network (ANN) have
created great potential for modeling of complex
engineering behaviors such as signal processing and
engineering control. "ANN" has also been used in the
various fields of textile researches such as prediction of
pilling tendency of wool knits, seam performance of
woven apparels and structural behaviors of nonwoven
fabrics. Present study employs artificial neural network
modeling to predict forces experienced by individual fork
needle during random-velour needling.

II. ARTIFICIAL NEURAL NETWORK MODELING

An artificial neural network is a computational structure,
consisting of a number of complex networks of processing
elements, known as nodes, that dynamically responses to
an external input. The neural network learns the governing
relationships in the data set by adjusting the weights
among nodes. A neural network essentially functions as a
tool that maps input vectors to output vectors [18]. Figure
3 shows a fully-connected feed-forward neural network
used in this study. This model comprises of an input, a
hidden and an output neuron layers.
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Fig. 3. A fully-connected three-layers feed-forward neural network.

The transfer functions are logistic sigmoid and linear
respectively, as shown in Figure 4, where "n” and "m" are
number of input parameters and number of hidden layer
respectively.

The vector values of hidden-layer neurons (h;) is
calculated using continuously valued input vector q,
qa,---qn and a transfer function that acts in relation to Wj
values which are the weights between the input, hidden
layers and b; values (bias) between the input and hidden
layers according to Eq. (1).

The unique desired output value (Qy) is obtained in
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terms of Eq. (2) by continuation of the Eq. (1) operations
among hidden and output layers. Figure 4 depicts logistic
sigmoid and linear transfer functions. "m" and "n" denote
number of hidden layer and input parameters respectively.

hjzf(é\vijqi_bj]a 1

where, f(x) is a logistic sigmoid function, i.e.
1
fix)= .
( ) 1+e7™*
m
Oy =g/ X Wjq;—by (@)
j=1

k represents the number of output layer, Wi, are the hidden
and output layers connecting weights, b, denotes the bias
connecting the hidden and output layers and g is a linear
function.

Fig. 4. Transfer functions, a) logistic sigmoid function, b) linear function.

In order to predict the total average force, an artificial
neural network model based on a multi-layered feed-
forward back-propagation algorithm comprises of nine
inputs and one output neuron was developed. The ANN
model was used to map the total average force "F,y," and
input parameters. Pairs of input-output were presented to
the network. Weights were adjusted so that the error
between the network generated output and the actual
values was minimized. The output of the model formed the
total average force experienced by the fork needle during
random-velour needling.

III. DESIGN OF FORCE MEASUREMENT SYSTEM

Block diagram of the designed force measuring system
is depicted in figure 5. The system precisely displays
needling stroke frequency by incorporation of a precision
Rotary Variable Differential Transformer (RVDT). Cyclic
angular position of the main shaft in relation to vertical
position of the needle board is also displayed.

Based on elimination principle, the twin load cell shown
in figure 6 precisely measures the contribution of the
factors such as vibration, inertia, frictional resistances of
brush conveyor, dwell of the needle board at bottom dead
center and characteristics of consolidated fibrous assembly
to total force. A "BONGSHIN Miniature Load Cell", type
CBFS, capacity 5 kg sensor with rated output of 1.0 mV/V
was used. However, since the present study deals with the
effect of fiber and needling related parameters on the total
force only data acquired from one load cell is cumulatively
analyzed.

Data acquisition and analysis are carried out using a
purposely designed MATLAB R2010a based Force
Analysis Software abbreviated to (FAS). The "FAS"
capabilities include alteration of sampling start time and
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inputting of calibration equation of the load cell in the
software.
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Fig. 5. Force measuring system block diagram.
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Fig. 6. Force measuring unit, a) off-machine, b) on-machine.
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IV. EXPERIMENTAL

Since both needle looms and needles are designed on
deflection principals therefore, quantification of force
exerted on fork needles during fiber re-orientation is of
vital importance. It has been also established that fiber
characteristics together with needling adjustments, during
both needle felting and random-velour needling operations
are pivotal not only as far as physical and mechanical
behavior of random-velour needled fabric is concerned, but
also can probably affect the force exerted on the fork
needle [19].

In this work, a total of sixty four different random-
velour needled fabrics were prepared. In order to achieve
the most comprehensive analysis, a large number of fiber
and needling related independent variables (X; to Xo) as
described in Table I, were defined. Variables X; to Xj
denote fineness, mean staple length and crimp frequency of
the fiber respectively. X, represents mass per unit area of
felted fibrous assembly. X5 and X4 denote barbed needle
penetration depth and punch density during needle-felting
operation respectively. The measured magnitudes of total
average force "F," was selected as dependent or output
variable (Y) by manipulation of three independent
variables X7, Xg and Xo, represent fork needle penetration
depth, stroke frequency and punch density during random-
velour needling respectively. Total average force
represents root mean value of the squared discrete force
signal of individual fork needles acquired during given
stroke cycles, according to Eq. (3).

3

when:

Fums: Root mean value of the squared discrete force
signal,

F:: i Value of the force signal, and

n: Total numbers of force signal (at rate of 25x10° per

second).

Magnitude of "Fyys" for an individual needle is in fact
power of force signal for the needle. "Frps" can be needle
loom energy consumption index, provided "Fp"
encompass all fork needles then.

Carded 25 g/m® polyester web was delivered to a
horizontal cross-folding unit and fiber mean staple length
for each experimental sample was calculated [20]. Cross-
folded batt was fed to a conventional felting needle loom,
equipped with GROZ-BECKERT 15%18+¥32%3 R333
G1002 barbed needles. Mass per unit area of each
consolidated felted fibrous assemblies was determined.
The felted materials were fed to a laboratory random-
velour needle loom, shown in figure 7. This loom was
equipped with GROZ-BECKERT 15%17%25%38%63.5
DG1000 structuring fork needles [21].

As can be seen in Table I, variables numerically are
scattered. Therefore, input and output data were
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normalized in a pre-processing step. The conversion is
based on the normal function provided by Matlab
helpusing "Prestd" order in neural network toolbox of
Matlab R2010a software [22-23]. Realistic prediction total
average force is made by "Prestd" preprocessing the
network training set by normalizing the inputs and outputs
so that each have zero mean and standard deviations of 1.
The pertaining data sets of 42, 14 and 8 of the samples
were randomly selected for training, validation, and test
sets respectively. Non occurrence of over fitting in the
final result was assured using validation set. The model
error can also be evaluated using the test set.

Fig. 7. L;boratory random-velour needle-loom.

The model used in this work is one hidden layered
multilayer Perceptron ANN as shown in Figure 3. The
hidden layer contained various numbers of neurons.
Extensive training and testing of the model revealed that
existence of 6 neurons in the hidden layer minimize the
value of mean square error (MSE) of the model.

As shown in Figure 4, the Logistic Sigmoid function
(logsig) for the first layer and the Linear function (purelin)
for the last layer are used as the transfer functions.
Lerenberge-Marquarte back-propagation technique was
used as training algorithm of the model. This is an iterative
gradient algorithm which minimizes the "MSE" value
between predicted and desired output results.

V. RESULTS AND DISCUSSION

Acceptable compatibility between predicted and
experimental results was achieved by minimization of error
due to successive modeling trials, which led to selection of
the trained model. During training, model weight and
biases are varied in a manner that minimum value of model
perform function are reached. By definition the perform
function of the feed-forward model is mean square error
(MSE) among predicted and targeted results. An ultimate
MSE value of approximately 3.4x10°% was obtained after
performing simultaneous stages of training and validation
in the 59™ epoch, as shown in Figure 8.
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TABLE I
MODEL VARIABLES VALUE (64 EXPERIMENTAL SAMPLES)

95

Model variable

5 §E 33 fz g3 g 23 ZE g g g § & g g =
8 3 = 3 2 22 3, & 2 El 5 2 _ 382 s Z € m
g g 3 < g =8 3 g 38 3 8 38 EEPE S & E
H e o3 2 3 3 >3 23 20 ENE]
8 g 8% 4 & z = b g =

1 1" 121 45 320 7 50 8 231 100 75.44
2 1 125 45 321 7 50 8 463 200 97.43
3 " 128 4.5 322 4 100 8 581 300 119.69
4 11 120 4.5 335 hd 125 8 696 400 121.75
5 1 129 45 330 9 50 10 347 200 132.51
6 11 122 4.5 333 9 75 10 233 300 108.42
b 11 129 4.5 322 9 100 10 461 100 131.77
8 1 128 45 334 9 125 10 579 400 15151
9 1" 126 4.5 324 11 50 12 697 300 178.92
10 1 123 45 332 11 75 12 463 400 150.57
11 11 124 4.5 330 11 100 12 231 100 93.30
12 11 120 4.5 318 11 125 12 582 200 147.71
13 11 128 4.5 336 13 50 12 346 400 126.92
14 11 129 45 319 13 75 12 462 200 136.16
15 11 120 45 327 13 100 14 581 100 146.71
16 " 125 45 329 13 125 14 695 300 173.95
17 13 90 2.3 550 i 50 8 230 100 134.13
18 13 95 23 540 7 75 8 462 200 148.68
19 13 87 23 545 7 100 8 578 300 152.34
20 13 93 23 548 7 125 8 691 400 164.03
21 13 92 23 550 9 50 10 346 200 134.50
22 13 97 23 554 9 75 10 231 300 120.43
23 13 93 23 541 9 100 10 461 100 143.90
24 13 90 23 549 9 125 10 693 400 164.61
25 13 85 23 552 11 50 12 699 300 177.92
26 13 88 23 564 11 75 12 462 400 147.96
27 13 92 23 561 11 100 12 231 100 137.47
28 13 89 23 538 1 125 12 585 200 165.76
29 13 96 23 562 13 50 12 346 400 136.33
30 13 89 23 547 13 75 12 463 200 149.88
31 13 91 23 549 13 100 14 579 100 155.58
2 13 9% 23 559 13 125 14 695 300 208.10
33 9 124 27 425 7 50 8 230 100 134.42
34 9 129 27 420 74 75 8 462 200 143.64
35 9 127 27 422 7 100 8 576 300 155.45
36 9 125 27 430 7 125 8 695 400 166.56
37 9 126 27 438 9 50 10 346 200 135.74
38 9 129 27 440 9 75 10 233 300 129.15
39 9 127 27 429 9 100 10 461 100 139.28
% 9 121 27 438 9 125 10 579 400 196.23
41 9 120 27 428 11 50 12 696 300 197.91
42 9 122 27 441 11 75 12 462 400 189.50
43 9 124 27 a2 11 100 12 231 100 14851
44 9 123 27 434 11 125 12 581 200 169.43
45 9 125 27 a5 13 50 12 6 400 14533
46 9 127 27 427 13 75 12 462 200 153.63
47 9 126 27 424 13 100 14 580 100 165.08
8 9 129 27 430 13 125 14 695 300 192.48
9 9 7 40 640 7 50 8 230 100 106.10
50 9 73 4.0 650 7 75 8 462 200 133.40
51 9 75 40 647 7 100 8 576 300 159,57
52 9 72 4.0 652 7 125 8 695 400 162.79
53 9 74 4.0 642 9 50 10 346 200 134.55
54 9 75 40 652 9 75 10 233 300 124.98
55 9 76 4.0 637 9 100 10 481 100 138.11
56 9 78 4.0 647 9 125 10 579 400 191.41
57 9 79 4.0 636 11 50 12 696 300 177.82
58 9 77 4.0 645 11 75 12 462 400 184.27
59 9 75 40 644 11 100 12 231 100 132.41
60 9 78 40 637 1 125 12 581 200 184,82
61 9 76 4.0 662 13 50 12 346 400 137.82
62 9 78 4.0 641 13 75 12 462 200 145.71
63 9 79 4.0 649 13 100 14 579 100 172.16
64 9 75 4.05 650 13 125 14 695 300 183.51
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Fig. 8. Minimum Value of MSE in 59" epoch of training and validation
stages.

The selected model is tested by 8 of 64 actual data.
Figure 9 shows correlation values among predicted and
experimental data of training (R=1) and test (R=0.87589)
stages.
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Fig. 9. Predicted and Experimental Data: a) Training, b) Test.

Training of neural network was achieved using nine
input parameters. Model was tested by feeding the inputs
into the network. The model generated values of total
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average force "Fyy," were compared with experimentally
obtained results. Equation 4 gives the percentage average
of absolute error of eight test data.

i (vi —¥3)
Error(%) = SYi x100 @

When y; and y, as stated in Table II are predicted and

experimental values respectively.

TABLE II
PREDICTED AND EXPERIMENTAL VALUES OF EIGHT TESTS DATA
No. of test data Predicted value Experimental value
Yi® Yi @

1 150.5687 151.51

2 166.7048 173.95

3 177.4509 164.61

4 224.1523 208.10

5 201.1091 196.23

6 218.2833 192.48

7 189.4479 191.41

8 213.2968 183.51

Error (%) = 6.68%

Eq. 5 [23] gives the significance percentage effect of
each parameter on "Frms" using neuron weights in the
hidden and output layers. The results based on extraction
of neurons weight in hidden and output layers from the
model in relation to Tables III and IV are shown in Table
V.

Wi

T o

Effect; (%) = o
XX W+ Wy

i=1j=1k=1

x100 )

Table V indicates that fiber characteristics and needling
parameters percentage effect more or less equally affect
"Frs'". Results also emphasized the importance of factors
such as punch density and needle penetration depth
pertaining to initial felt needling. In this regard the
influence of mass per unit area of random-velour needled
fabric and fiber crimp on "F,;,;" must not be ignored.

VI. CONCLUSION

The artificial neural network has great potential for
modeling of complex nonlinear textile processes. The
back-propagation network model was used to predict
"Frms" behavior when the relative importance of inputs
was known. A general model capable of predicting the
combined effect of fiber characteristics, mass per unit area
of initial pre-consolidated fibrous assembly together with
needling adjustment during both needling stages on total
average force exerted on the fork needle was developed.
Validity of the model was confirmed by small value of
mean square error and the relatively high coefficient of
correlation of the test data. The use of validation technique
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TABLE IIT
Wy, VALUES (BETWEEN INPUT AND HIDDEN LAYERS)
Wy Wy Wy Wy A Wy Wy Wy, Wy
=1 -10.2209 3.0422 -3.3809 -0.8074 3.3465 4.7798 -2.2070 -5.1939 -0.3095
j=2 -0.4273 -3.0007 -0.4542 -2.9269 2.6639 0.7045 -2.0218 -1.4483 0.9492
=3 1.2983 1.2056 -4.6878 6.2337 5.4000 6.1853 -9.7229 -2.2089 -0.8152
=4 -0.3361 0.3726 -1.2828 0.9146 -1.6754 0.3344 0.0938 -0.1564 -1.1032
=5 1.2963 1.9592 -6.6960 5.2698 5.0740 -5.5554 17063 -3.5660 6.1474
=6 -0.4100 5.4505 2.5951 3.9631 -2.8666 -5.9653 -0.1712 -1.3026 -9.2166
TABLE IV
W VALUES (BETWEEN HIDDEN AND OUTPUT LAYERS)
Wik Woy Wiy Wk Wk W
K=1 1.4044 -4.7716 2.4427 -3.9633 1.8466 -0.8262
TABLE V
SIGNIFICANCE PERCENTAGE OF INPUT PARAMETERS ON "Fyys" VALUE
Parameters
Stroke Speed,
Fineness Length Crimp Mass Pent. Depth, Felt Punch Density, Felt Pent. Depth, Velour Punch Density, Velour
(denier) (mm) (1/Cm) (g/m’) (mm) (11em’) (mm) Velour (1/cm’)
(s/min)
9.79% 10.15% 11.52% 11.86% 12.16% 12.99% 10.45% 9.76% 11.32%

as well as small Error% among predicted and experimental
test data further verified that the ANN model is in fact the
generalized mapping of the inputs and output parameters.
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