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Characterization of Fabric Tensile Loading Curve in
Nonlinear Region Related to Their Structure;
Part I: Woven Fabric

Kianoush Hosseini, Abdolhossein Sadeghi and Ali Asghar Asgharian Jeddi

Abstract—This study focuses on the tensile modulus and
Poisson’s ratio variations of woven fabric in nonlinear region
of load-extension curve. This region of the curve can play as a
control approach on the secondary modulus/primary
modulus ratio. For this purpose, the fabric modulus and
Poisson’s ratio were determined for three different weave
structures (plain, 1/3 twill, and 1/7 twill) in the warp and weft
directions. The experimental results were analysed
statistically to obtain the primary and secondary linear
regions and also the nonlinear region of fabrics moduli. The
analysis explain that the geometry of fabric structures such as
the float and diagonal parts of yarn and also the yarn crimp
in both warp and weft yarns have important role on the
modulus and Poisson’s ratio of fabrics in the nonlinear
region. It was found that the greatest range of the nonlinear
region in the warp direction is for plain then, 1/3 and 1/7 twill
weaves, respectively, by reason of the increase of diagonal
part of yarn and the decrease of float part of yarn in fabric
structures, simultaneously. But, due to the buckling of the
float part of yarn in the weft direction, the 1/7 twill weave has
the greatest range of the nonlinear region and the plain weave
has the least one.

Key words: Woven fabric, tensile modulus, Poisson’s ratio,
uniaxial tensile loading, nonlinear region.

1. INTRODUCTION

S the woven fabric is subjected to uniaxial tensile

loading at low levels, crimp interchange occurs as
crimp of the yarns decreases in the loaded direction and
increases in the cross direction. As the load is increased
past the crimp interchange region, yarns in the loading
direction are further extended. In this region of
deformation, the main factor of further fabric deformation
is due to yarn extension. The tensile behavior of woven
fabric under a gradually increasing applied force is usually
shown by the load-extension curve in which the slope of
the primary linear region of the curve, low resistance
region, is called as the primary modulus and the slope of
the secondary linear region of the curve, high resistance
region, is called as the secondary modulus [1-5]. There is a
nonlinear region between these two linear regions that
could be affected by the fabric structure (Figure 1). This
nonlinear region can play very important role in the tensile
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extension behavior of fabric. For instance, we need
sometimes to have a very easy extension of fabric at the
start of loading and at the end a severe extension (e.g.:
ventricular restraint device, protection nets, and composite
fabrics in molding process). In this case, the range of
nonlinear region should be very short.
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Fig. 1. Load-extension curve of woven fabric.

The pioneer in the investigation of tensile deformation
of woven fabrics is Peirce [6]. He began this investigation
from the viewpoint of the geometrical analysis of the
weave. Grosberg and Kedia [7] analysed the initial load-
extension modulus of a cloth and showed that it depends
not only on the bending modulus of the yarn and the
geometry it takes up in the cloth, but also on the strain
history of the fabric. Kawabata, Niwa, and Kawai [8-9]
presented the uniaxial and biaxial tensile deformation
theories for plain woven fabrics based on their structural
mechanics. Both the uniaxial and biaxial tensile properties
were successfully calculated with the aid of these models.
Realff [3] in study on the plain weave fabric expressed as
the amount of yarn crimp increases, the extent of the crimp
interchange region increases and thus, fabric breaking
extension increases. She found that with the change of
weave density, the amount of yarn crimp changes. In
continuation, Realff, Boyce, and Backer [4] introduced a
micromechanical model in which the entire uniaxial tensile
stress-strain behavior of the woven fabric is modeled from
the constitutive yarn properties and the original fabric
geometry. To predict the behavior of woven fabric in
uniaxial tension and relaxation, Halleb and Amar [10]
proposed a rheological model with 15 coefficients that are
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identified from the tests. An artificial neuronal network
trained with a retro-propagation algorithm performs
functional mapping between these mechanical coefficients
and the technical parameters of fabric, which allows
predicting the mechanical behavior of fabrics starting only
from their technical parameters. In continuation of their
study, Halleb & Amar [11] modified the rheological model
and proposed an analytical model with 10 coefficients in
order to simplify the procedure of identification and to
diminish the experimental work. Somodi et al. [12]
presented a micromechanical model of the tensile behavior
of woven fabric in which the model covers both geometric
and material nonlinearities in fabric deformation with a
limited set of basic parameters. In order to refine the initial
estimate, these set of parameters were optimized using
genetic algorithm. The results obtained of the model
showed good agreement with the experimental ones.

Leaf and Kandil [13] introduced a straight-line or saw-
tooth model to represent an idealized woven fabric and
presented an analysis of the initial load-extension behavior
of plain woven fabrics. A closed-form analytical solution
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II. MATERIALS AND METHODS

Woven fabrics with different weave structures including
plain, 1/3, and 1/7 twill weaves were produced using 153
denier (17 tex) polyester filament for warp yarn and 16.63
Ne (35.5 tex) ring-spun cotton for weft yarn. These fabrics
were woven on a dobby weaving machine with weave
width of 155 cm, and the same warp and weft weave
densities. Then, they were finished under normal industrial
conditions as follows. All woven fabrics were first washed
in an air jet machine with a solution of 0.5 g/lit detergent at
boiled temperature. Washed fabrics were then dried with a
hot steam of 120 °C.

The tensile properties of fabrics were obtained
according to the standard ISO 13934-1:1999 using a CRE
tensile tester with a crosshead speed of 100 mm/min and a
gauge length of 200 mm. Other properties of fabrics such
as crimp, weave density, mass per unit area, and thickness
were measured according to the standards ASTM D 3883-
04, D 3775-08, D 3776-09, and D 1777-96. The values of
these physical and mechanical properties are given in

TABLE I
PHYSICAL AND MECHANICAL PROPERTIES OF TESTED WOVEN FABRICS

Breaking force

Breaking extension

) -1 : i
Weave Weave density [CIT1 7] Crimp [%] Mass per unit area Thickness
IN) [mml 2 [mm]
structure 1g/m?
Warp Weft Warp Weft Warp Weft Warp Weft
Plain 41 20.8 9 6 1245 449 78 15.15 154 0.35
1/3 Twill 423 20.95 7 9 1287 428 68 22 158 0.44
/7 Twill 443 21.2 55 115 1295 411 57.5 282 163 0.63
was found for the initial Young’s modulus and the Table L

Poisson’s ratio of the fabric, when the yarns were assumed
to be inextensible and incompressible. Bais-Singh et al.
[14] presented an experimental method based on video
recording and image analysis to characterize the lateral
contraction of nonwoven fabrics during uniaxial tensile
deformation. They indicated that the Poisson’s ratio can
also be readily estimated using this method. Sun ez al. [15]
developed a mechanical model for a woven fabric made of
extensible yarns to calculate the fabric Poisson’s ratios.
They showed that the Poisson’s ratio in a woven fabric
arises from the interaction between the warp and weft
yarns, and can be expressed in terms of the structural and
mechanical parameters of the system. Hursa et al. [16]
presented a digital image correlation method for the
determination of Poisson’s ratio of woven fabric and
indicated that the value of the Poisson’s ratio depends on
the weave type and the number of yarns in the fabric.

The present paper investigates the tensile modulus and
Poisson’s ratio variations of the woven fabric in nonlinear
region of load-extension curve. In this investigation, it is
attempted to analyze these parameters based on the
variations of the warp and weft yarn crimps and woven
fabric structures.

A. Determination of nonlinear region of load-extension
curve

To measure the tensile properties of the woven fabrics
from each weave structure five specimens were tested in
the warp and weft directions. The data of the load and
extension were recorded at extension intervals of 0.0833
mm by the tensile tester. Then, the load-extension curves
of the fabrics were plotted using these data. To determine
the fabric moduli values in different regions of the curve,
the slopes of load-extension curve are obtained at the
points with extension intervals of 1 mm (twelve times of
interval between two successive recorded data i.e.
12x0.0833 mm = 1 mm) from zero to the breaking
extension. These slopes were calculated by written a
program in MATLAB and using the nine-point central
difference with the following equation [17]. (The nine
point central difference method is more accurate than the
calculation “y” using only one point.):
1
* 840h

6724 —168f, 7 + 326, 43 —3f4n)

f (3fX—4h _32fx—3h + l68fx~2h - 672fX-h +

M
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TABLE II
RESULTS OF HOMOGENEOUS SUBSETS RELATED TO TUKEY TEST FOR THE 1/7 TWILL WEAVE IN THE WEFT DIRECTION

Extension

Subset for alpha = 0.05

(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 0.2
2 5 0.2
4 5 05
3 5 07
5 5 0.8
6 5 12 12
9 5 13 13
7 5 14 14 14
8 5 15 15 15
10 5 26 26 26
11 5 30 30
12 5 37
13 5 6.1
14 5 74
15 5 102
16 5 127
17 5 16.0
18 5 204
19 5 240
20 5 26.2
21 5 292
22 5 318
23 5 34.0
24 5 355 355
25 5 36.6
27 5 36.7
28 5 36.7
26 5 37.2
Sig. 028 0.37 0.05 066 0.40 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 0.1 0.05

where f, is the value of slope (modulus) at x mm
extension. Also, h = 0.0833 mm is interval between two
successive recorded data and f, ., f,on, fan. Ty s
fyon»> fxon» fx_an and f,_,, are the values of load at x+h,
x+2h, x+3h, x+4h, x-h, x-2h, x-3h, x-4h mm extension,
respectively. These calculations were performed for all the
plotted load-extension curves of each weave structure in
both warp and weft directions. The data of slopes of each
interval were analysed for significance in differences,
using one-way ANOVA test at the 95% level of
confidence. Therefore, Tukey test was performed to
categorize the homogeneous subsets. As a typical
calculation, these homogeneous subsets are displayed in
Table II for the 1/7 twill weave structure in the weft
direction. The first and last subsets are contained the
lowest and highest values, respectively. The first subset
(the slopes values at nine first points) indicates the primary
linear region of the load-extension curve as the primary
modulus of fabric, while the last subset (the slopes values
at five last points) indicates the secondary linear region of
the curve as the secondary modulus. Therefore, the
nonlinear region of the load-extension curve between these
two linear regions is determined as the nonlinear region of
the fabric modulus.

B. Determination of Poisson’s ratio

To determine Poisson’s ratio, the fabric specimens were
prepared according to the standard of the tensile properties.
A black ring with internal diameter of 25 mm was drawn
by stamping method in the center of the fabric specimens
to avoid the jaw and edge effects during measurement. The
fabric specimens prepared in this way were placed on the
tensile tester and illuminated by halogen bulb lamp. When
the fabric specimen is subjected to uniaxial tensile loading,
the black ring is deformed from circular to elliptical shape
and hence, the sizes of the horizontal and vertical
diameters are changed. This process was recorded by a
digital video camera Canon MV750i which was placed on
a tripod in front of the tensile tester, as by the experimental
scheme shown in Figure 2. The digital video camera had a
resolution of 720 x 576 pixels?, could capture 25 frames
per second and was connected to a computer through a
video capture card. This interface device was used for
recording from the digital video camera to the computer. In
this way, the video recording was saved on a computer
hard disk drive in AVI format. It should be mentioned that
the digital video camera started to record moments before
the fabric specimen is subjected to uniaxial tensile loading.
Hence, using the Ulead VideoStudio software, a part of the
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video recording which is belonged to the jaw stationary
position of the tensile tester was removed. The edited
video recording in AVI format was loaded into the
VirtualDub program in which every frame was extracted as
an image in BMP format. Then, the Poisson’s ratio is
measured at extension intervals of 1 mm. With regards to
the framing rate of the digital video camera (25 fps) and
the crosshead speed of tensile tester (100 mm/min), the
images with intervals of 15 frames which correspond to
these levels of extension were chosen.

It should be mentioned that the distance between two
points from an image could be expressed based on the
number of pixels between them. Hence, using Adobe
Photoshop software, the number of pixels of the internal
horizontal and vertical diameters of the ring was obtained
from the first image. Afterward, the number of pixels of
the deformed rings diameters was obtained from the next
corresponding images. Then, the strains in the horizontal
direction (g,,) and vertical direction (ey,) at the various
levels of extension were calculated according to the Egs
(2) and (3).

@)

€y =
L Xl.
Ya, — Yr
Yr
where x4 and yg are the number of pixels of the internal

€y, =

©))

horizontal and vertical diameters of the deformed rings at
the various levels of extension (i = the number of start
point to the end of nonlinear region of fabric modulus in
load-extension curve), respectively, and x, and y, are the
number of pixels of the same diameters of the ring before
extension. After finding the values of €y and €y, the

Poisson’s ratio values (v;) at the various levels of
extension were finally calculated using Eq. (4).
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Fig. 2. Experimental scheme.

Tensde Tester

III. RESULTS AND DISCUSSION

The average load-extension curves of the fabrics with
weave structures plain, 1/3 and 1/7 twill in the warp and
weft directions are shown in Figure 3 (a) and b,
respectively.

The range of the nonlinear region of the load-extension
curves was determined corresponding to the Methods
section (Table III). Also, the moduli values in this region
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are given at the intervals of 1 mm in Table IV.

The Poisson’s ratios of the fabrics were also calculated
in the same nonlinear region of the load-extension curves
at the intervals of 1 mm (Table V).

A. Warp direction characterization

With regard to Figure 4, it is observed that in the warp
direction, the greatest range of the nonlinear region is
belonged to the plain then, 1/3 and 1/7 twill weaves,
respectively. Whereas, the plain weave has the least rate of
modulus variations in the nonlinear region then, 1/3 and
1/7 twills, respectively. These behaviors can be attributed
to the amount of yarn crimp in this direction. As it is
shown in Figure 4, by increasing the amount of yarn crimp
in fabric structures, the range of the nonlinear region
increases and the rate of modulus variations in this region
decreases.

In the same range of nonlinear region, Figure 5 shows
the greatest rate of Poisson’s ratio variations is related to
the 1/7 twill then, 1/3 twill and plain weaves, respectively.
In other words, by increasing the amount of yarn crimp,
the rate of Poisson’s ratio variations decreases.
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Fig. 3. Load-extension curves of woven fabrics for different weave
structures: (a) warp direction (b) weft direction.

It should be mentioned that the amount of yarn crimp
could be affected by the structural parameters of woven
fabric such as the diagonal and float parts of yarn, as
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shown in Figure 6. The number of these parameters is TABLE V

: . : POISSON’S RATIOS VALUES IN NONLINEAR REGION OF THE LOAD-
EfvEn dor 155 squal s width (four repeat of plain EXTENSION CURVES OF FABRICS FOR DIFFERENT WEAVE STRUCTURES
weave, two repeat of 1/3 twill weave, and one repeat of 1/7

twill weave) in Table VI. It can be concluded that with the rance of Poisson’s ratio value
. . N o ange of
increase of the number of diagonal part of yarn in fabric exdorsion in noniinear
5 . . ” Plain 1/3 Twill /7 Twill
structure, the amount of yarn crimp in the warp direction region (mm)
increases. Also, with the increase of the number of float Warp Weit Warp Weft  Warp Weft
part of yarn, the amount of yarn crimp in this direction 3 0085 025 0221
decreases. 4 0117 0.360 0.260
5 0.154 0.425 0.314 0.326 0.276
TABLE III
0.187 0.460 0.361 0.343 0.341
RANGE OF NONLINEAR REGION OF THE LOAD-EXTENSION CURVES OF 8
FABRICS FOR DIFFERENT WEAVE STRUCTURES 7 0.228 0.487 0.400 0.360 0.435
Plain /3 Twil 7 Twil 8 0.280 0.510 0.474 0.390 0.524
Weave 9 0.323 0.498 0.532 0.398 0.619
structure Warp Weft Warp Weft Warp Weft 10 0.350 0.481 0.588 0.422 0.714 0.237
11 0.378 0.638 0.429 0.779 0.248
Range of
12 0.402 0.696 0.435 0.833 0.254
nonlinear
3-33 3-10 3-29 5-17 5-23 10-23
region (mm) 13 0.434 0.744 0.448 0.861 0.271
14 0.472 0.779 0.436 0.857 0.279
15 0.496 0.801 0.421 0.841 0.289
TABLE IV
MODULI VALUES IN NONLINEAR REGION OF THE LOAD-EXTENSION 16 9.521 0810 0404 0815 0288
CURVES OF FABRICS FOR DIFFERENT WEAVE STRUCTURES 17 0.540 0.798 0.382 . 0.787 0.308
Modulus value (N/mm) 18 0.559 0.780 0.756 0.315
Range of 19 0.569 0.764 0724 0310
extension in Plain 1/3 Twil /7 Twill 50 0578 0.745 0695 0303
nonlinear
" 21 0.582 0.723 0.669 0.291
region (mm) Warp Weft Warp Weft Warp Weft
22 0.572 0.705 0.645 0.279
.10 .07 .36
& 81 20 4 23 0.567 0.689 0.623 0.267
4 6.99 10.90 6.21 - 0.560 0672
5 9.54 16.04 9.31 3.14 4.17 55 0.549 0.656
6 11.53 21.84 12.04 3.10 5.89 26 0541 0.637
7 14.48 30.09 16.69 4.16 8.88 27 0.535 0.618
8 16.30 37.44 20.04 5.96 13.67 2 0.530 0.566
g9 17.85 42.03 2452 8.73 19.72 5% 0523 0579
10 18.83 45.32 28.06 12.25 27.88 261 % 0514
19 19.88 31.37 16.33 34.88 3.08 g 0.506
12 20.20 32.23 21.52 41.29 3.76 - 0.498
.49 .06 26.55 44.42 14
13 20.4¢ 33.0 6.5: 6 a3 0.480
14 20.36 31.12 30.58 44.16 7.44
15 20.11 28.40 33.79 41.27 10.29
16 20.39 26.46 36.44 37.45 12.73
17 19.32 23.88 38.09 33.32 16.07 700
18 18.40 21.39 29.14 20.49
19 18.11 2012 27.11 24.02 600/ i
20 17.13 19.22 25.89 26.22
21 16.35 19.94 25.72 29.29 500
22 16.51 20.12 26.22 31.85 Plain
15.79 21.03 27.11 34.03 o L & B
23 z 400 Greatest Crimp
24 16.21 22.71 o
©
25 17.22 23.08 ,_JO 300+ N
26 17.02 24.44
27 17.33 25.14 200F n
28 18.18 25.82
29 18.75 25.52 1001 e
30 18.80
31 19.91 0 e ! L L L L ,ﬁ‘
0 3 10 15 20 25 30 35
32 20.10 Extension (mm)
33 20.57 Fig. 4. Nonlinear region of the load-extension curves of fabrics for

different weave structures in the warp direction.
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Fig. 6. Structural parameters of woven fabric: diagonal and float parts of
yarn.

TABLE VI. NUMBER OF STRUCTURAL PARAMETERS IN THE EQUAL WIDTH,
CRIMP, AND WIDTH SHRINKAGE FOR PLAIN, 1/3 AND 1/7 TWILL WEAVES

Weave Diagonal part Float part Fabric width Crimp [%]
structure of yarn of yarn shrinkage [%] Warp Weft
Plain (4)x2 - 0.12 9 6
1/3 Twill (2)x2 (2)x2 3.03 7 9
/7 Twill (1)x2 (1)x6 7.41 55 1.5

'B. Weft direction characterization

With regard to Figure 7, it is observed that in the weft
direction, the greatest range of the nonlinear region is
belonged to the 1/7 twill then, 1/3 twill and plain weaves,
respectively. Whereas, the rate of modulus variations in
this region are increased from 1/7 twill to 1/3 twill and
plain weaves, respectively. These behaviors in the weft
direction are reversed to the warp direction with similar
explanation of yarn crimp. It means that, by increasing the
amount of yarn crimp, the range of the nonlinear region
increases whereas, the rate of modulus variations
decreases. Considering Figure 8, it is observed that by
increasing the amount of yarn crimp, the rate of Poisson’s
ratio variations decreases.
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Fig. 8. Poisson’s ratio of fabrics for different weave structures in
nonlinear region of load-extension curves in the weft direction.

To account for the mentioned analysis for the nonlinear
extension behavior of fabrics in more detail based on their
structures, the following explanation is presented. Table VI
shows that the width shrinkage of plain weave after temple
and finishing treatment is negligible, while for 1/3 and 1/7
twill weaves are considerable. The cause of this decrease
can be attributed to the existence of the float part of yarn in
these two weaves. With the increase of the number of float
part of yarn, the amount of decrease of fabric width
increases. During the width decreasing, the buckling of the
float part of weft yarn is occurred (Figure 9).
Consequently, the amount of yarn crimp in the weft
direction increases. As it has been given in Table VI, in
opposite to the warp direction, the 1/7 twill weave has the
greatest amount of yarn crimp and the plain weave has the
least amount in the weft direction.

As it has been given in Table I, the weft yarn density in
opposite to the warp yarn density is nearly constant that it
means the change of fabrics length is negligible. The
reason of this phenomenon is during weaving process that
the fabric is gripped in the warp direction by the warp
beam and the cloth roller. Since the fabric width decreases
after the temple, thus the warp yarns are locked by the weft
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yarns. Hence, there is no possibility for fabric length to be

decreased as demonstrated in Figure 10.

Yoo o

> 0% ¢

(b)

Fig. 9. The increase of warp yarn density (black) and the buckling of float
part of weft yarn (white) during decrease of fabric width: (a) before

buckling (b) after buckling.

Ny

Fig. 10. To lock the warp yarns by the weft yarns.

IV. CONCLUSIONS

The nonlinear region of load-extension curve of woven
fabric is considered as an important role in the tensile
extension behavior of fabric. In this study, it was found
that the geometry of fabric structures has a considerable
influence on the tensile modulus and Poisson’s ratio
variations of woven fabric. The following points are also

concluded from this investigation:

In the warp direction, the greatest range of the nonlinear
region is for plain then, 1/3 and 1/7 twill weaves,
respectively. This trend is reverse for the rate of tensile
modulus variations and the rate of Poisson’s ratio

variations in the same region.

) // £ ‘
,‘; /eft direction

With the increase of diagonal part of yarn in fabric
structure, the range of the nonlinear region is increased.
With the increase of float part of yarn in fabric structure,
the range of the nonlinear region is decreased.

In the weft direction, the greatest range of the nonlinear
region is for the 1/7 twill then, 1/3 twill and plain weaves,
respectively. It was attributed to the buckling of the float
part of yarn in weft direction.
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