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Prediction of Relaxed Woven Fabric Geometry Using Energy Method

Hadi Dabirian*, Ali Asghar Asgharian Jeddi, and Hadi Sharifi

Abstract- The aim of this study is to present a method to 
predict the geometrical parameters of relaxed fabrics using 
energy method. For this purpose, the potential energy of on-
loom state of fabric is calculated and minimized to achieve 
theoretically the fully relaxed state. Tensile, bending and 
compression deformations of yarns are considered to obtain 
total strain energy of the unit-cell. Peirce’s geometric model for 
woven fabrics is used in order to find geometrical equations. 
The predictions are compared with experimental data and the 
results are discussed.

Keywords: relaxed state, woven fabric, geometry, energy 
method

Nomenclature

H. Dabirian, A.A. Asgharian Jeddi, and H. Sharifi
Departmentof Textile Engineering, Amirkabir University of Technology, 
Tehran, Iran.

Correspondence should be addressed to H. Dabirian 
e-mail: dabiryan@aut.ac.ir

I. INTRODUCTION

After removing fabrics from a loom, they are usually 
deformed due to residual stresses. Hence, it is 

essential that the fabrics to be relaxed before experimental 
measurements in order to determine the relationships 
which are independent of the detailed machine processing 
conditions [1]. The prediction of relaxed dimension of 
fabrics can be very useful in choosing the relaxation 
method and controlling relaxation conditions. The subject 
of fabric relaxation has been studied by many researchers 
[2-6]. Two states of relaxation, i.e. dry-relaxed and wet-
relaxed, have been defined by Munden [2]. He suggested 
that the natural shape of the knitted loop was able to be 
determined by minimum energy conditions. Knapton  
et al. [3] investigated the dimensional properties of knitted 
wool fabrics and found that the fully-relaxed state was 
only achieved after the fabrics were thoroughly wetted-out, 
briefly hydro-extracted, and tumbled dried. Dimensional 
properties of fabrics have been studied by numerous 
researchers [4-7]. 

Over the years, energy method has been widely used 
to analyze the structure and mechanics of yarns, knitted 
fabrics, woven fabrics and nonwovens [8-16]. De Jong and 
Postle [12] proposed a general energy analysis of fabric 
mechanics which is independent of the fabric construction. 
Hearle et al. [13] reviewed the methods to investigate 
the mechanic of fabrics and suggested an energy-based 
approach to analyze the structure of fabrics. A theoretical 
model has been presented to predict the initial modulus 
of plain woven fabrics using Castigliano’s theorem by 
Leaf and Kandil [14]. Dabiryan et al. [15,16] studied the 
structure of warp-knitted fabrics using energy method. 
Sagar et al. [17] demonstrated the advantages of energy-
based approach to solve fabric mechanics problems without 
the necessity of complex 3D finite element analysis. 
They presented a mechanical model to predict the tensile 
response of plain-woven fabric under in-plane uniaxial/
biaxial loads. Different geometrical models have been 
presented for plain woven fabrics [18-21]. Manjunath and 
Behera [22] modeled the unit-cell of woven fabrics. They 
showed that the results computed from the models are close 
to the experimental values. Ferranto and Luo [23] modeled 
the plain woven fabrics from un-woven yarn configuration 
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using finite element method (FEM). Considering the 
geometry and material properties of yarns, they simulated 
the geometry of fabrics.

Although, the Peirce’s geometrical model has unrealistic 
assumptions about the yarn’s configuration in the structure 
of fabric, it is suitable to use in mechanical analysis 
because of simplicity. Therefore, it is used as the relaxed 
geometry of fabrics in this paper. In the present work, the 
minimization technique of energy is used to analyze the 
deformation of fabrics during the relaxation process. 

A. Energy Approach
During fabric formation, constituent yarns are subjected 
to biaxialtension on the loom. The internal and external 
forces generate residual stresses needing to be eliminated 
in relaxation process. The fully relaxed state of fabrics can 
be defined as the minimum-energy shape of yarns within 
the fabric structure. It is well known that the total potential 
energy ‘P’ of a conservative system is given by:

Where U is the strain energy of the system and W is the 
potential of external forces.

Mathematically, the minimum of total energy is 
expressed as:

Where, ‘x1,x2,...,xn’ are the generalized (independent)
displacements associated with the generalized forces.

Fabrics in loom state are subjected to the biaxial tension 
due to the back-rest and temples position. The energies 
involved are associated with yarn extension, yarn bending 
and yarn compression. Therefore, the total energy stored in 
loom state of fabrics is:

(1)
Where;
UE: Tensile strain energy, 
UB: Bending strain energy, and 

UC: Compression strain energy.
It can be shown that [13]:

(2)

(3)

(4)

In following, the subscripts 1 and 2 indicate the warp and 
weft yarns, respectively.

The external work under biaxial tension of fabric is 
given by:

(5)

The parameters such as yarn twisting and friction are 
neglected.

The fabric geometry treated here is Pierce’s rigid model 
for plain woven fabrics which is shown in Fig. 1. The 
governing equations of this model are [17]:

(6)

(7)

(8)

(9)

(10)
It can be shown that [20]:

(11)

Considering these equations, the idea lgeometrical model 
has 10 unknown variables, i.e. p1, p2, l1, l2, h1, h2, q1, q2, 
d1 and d2, but there are five equations that connected 
them. Therefore, we need five more equations to find all 
of variables. The required equations can be obtained using 
principle of stationary potential energy. Since the variation 
of internal energies occurs during fabric relaxation, two 
states of fabrics are treated, loom state and relaxed state.
The loom state of fabric is considered as initial state, and 
the relaxed state would be deformed state of fabrics. The 
geometrical variables of fabrics are categorized into two 
categories:
- Dependent variables which are related to the fabric 
structure, i.e. p1, p2, q1, q2, h1 and h2.
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Fig. 1. Peirce’s geometrical model for plain woven fabrics [17].
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- Independent variables which are associated with 
constituent yarn, i.e. l1, l2, δ1 and δ2.
Of all dependent variables, one of them should be 
considered as the independent parameter to solve the 
problems. Because of this, the weft distance (p2) is treated 
as independent variable. 

B. Calculation of Total Energy 
It was aforementioned that the tensile, bending and 
compression of yarns within the fabric structure are 
considered. Using the strain energies equations and 
geometrical parameters of fabric, the tensile strain energy 
of fabrics under biaxial extension is given by:

(12)

Bending strain energy of fabric depends on the yarn 
curvature in the unit-cell. According to the shape of the 
cross-section, the curvature of yarns is changed. In circular 
cross-section, the length of the yarn is divided into free 
zone and contact zone. The free zone is a straight line, but 
the contact zone has an arc shape. It means that the yarn 
in contact zone is bent due the bending moment. The radii 
of yarn curvature can be assumed equal to D/2. Hence, the 
bending strain energy is expressed as bellow:

(13)

Yarns are flattened in the crossovers points due to the inter 
yarn pressure. Compression energy can be expressed in 
terms of transverse strain and compression modulus of 
yarns:

(14)

And, the potential of external loads is obtained as follow:

(15)

Consequently, the total potential energy of the unit-cell 
under biaxial tension is:

(16)

It is possible to obtain force-equilibrium equations using 
the principle of stationary potential energy. Minimizing the 
total energy with respect to five independent variables i.e. 

p2, l1, l2, δ1 and δ2 gives the five required equations to obtain 
the unknown parameters (see Appendix I).

(17)

(18)

(19)

(20)

(21)

C. Calculation of Geometrical Parameters of Fabric
It was aforementioned that the loom state of fabrics is the 
initial state of system. Therefore, the geometrical parameters 
of fabrics in this state (i.e. p01, p02, l01, l02, h01, h02, θ01, θ02) and 
yarns characteristics (i.e. d01, d02, E1, E2, B1 and B2) are the 
known parameters. The geometrical parameters of relaxed 
state (i.e. p1, p2, l1, l2, d1, d2, h1, h2, θ1, θ2) are the unknown 
parameters which should be calculated as the results of 
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minimizing the potential energy of system. By solving 
simultaneous Eqs. (6)–(10) and (17)–(21) for the geometric 
derivative terms, the unknown variables are obtained. Since, 
these equations are non-linear the Newton-Raphson method 
can be used to solve them (see Appendix II). 

II. EXPERIMENTAL
A. Materials and Methods
To verify the proposed method, six types of plain woven 
fabrics were produced using different yarns on a SMIT 
Rapier TP400 weaving loom. The warp (50.4-tex cotton) 
was common to all groups, but the weft was varied 
according to the scheme shown in Table I.

Within each group, three fabrics with different numbers 

of picks/cm were woven. The geometrical parameters of 
fabrics on loom were measured. As shown in Fig. 2, the 
yam flexural rigidity was measured using ring loop method 
developed by Owen and Riding [24]. The results of flexural 
rigidity of yarns are presented in Table II.

The warp and weft thread-spacing in the fabrics were 
measured by counting the number of warps and wefts 
in a 10 cm length of cloth. Using measured values and 
geometrical equation the modular lengths of the yarns was 
obtained. The tensile modulus of yarns was measured using 
an Instron tensile tester based on ASTM D2256. The forces 
in the warp and weft directions (F1 and F2) were measured 
using a tensionmeter on the loom. For measuring F1, the 
tensionmeter was set on the warp yarns between backrest 
and head. But, in order to measure F2, a simulated state was 
designed on the Instron tensile tester in which the fabrics 
were stretched up to the initial dimension and the load was 
recorded. These data are summarized as the characteristic 
of initial state of fabric in Table III.

Putting the values of the Table III into the derived 
equations, the geometrical parameters of relaxed fabrics 
(deformed state) are calculated. To solve the equations, 
the Newton-Rophson method was used on the MATLAB v 
R2007. The theoretical results of the model have been shown 
in Table IV. To get the relaxed state empirically, the fabrics 
were removed from the loom and laid on a flat surface for 24 
h. After that, the samples were washed at 90 °C for 1 h. The 

Fabric group Material
Linear density

(Tex)

Y1P Cotton 34.5

Y2P Polyester 27.5

TABLE I
DETAILS OF THE WEFT YARNS

 

Fig. 2. Measuring the flexural rigidity using ring loop method.

Yarn type d/L*

Average load

(N)

 Flexural rigidity

(mN.mm2)

Weft-type Y1 0.074 0.021 2.18

Weft-type Y2 0.074 0.026 3.09

Warp 0.074 0.034 3.67

 Fabric
code

t1 (text) t2 (tex) E1 (N/tex) E2 (N/tex) B1 (mN.mm2) B2 (mN.mm2) P01 (mm) P02 (mm) F1 (N) F2 (N)

Y1P1 34.4 50.4 3836 4498 3.67 2.18 0.625 1.00 0.78 0.14

Y1P2 34.4 50.4 3836 4498 3.67 2.18 0.625 0.71 0.82 0.09

Y1P3 34.4 50.4 3836 4498 3.67 2.18 0.625 0.55 0.83 0.08

Y2P1 27.5 50.4 3836 1668 3.67 3.09 0.625 1.00 0.78 0.16

Y2P2 27.5 50.4 3836 1668 3.67 3.09 0.625 0.71 0.85 0.1

Y2P3 27.5 50.4 3836 1668 3.67 3.09 0.625 0.55 0.85 0.1

TABLE II
RESULTS OF YARN’S FLEXURAL RIGIDITY

TABLE III
CHARACTERISTICS OF THE INITIAL STATE (ON LOOM)

*d: loop diameter; L: length of deformed loop
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geometrical parameters of fabrics were measured after 24 h. 
 For measuring the modular lengths, fabric samples with 
dimension of 10×10 cm2 were prepared, and a number of 
weft and warp yarns were removed from their structure. In 
order to decrimp yarns, a load of 10 g was applied on yarns 
and the length of yarns was recorded as modular lengths. 
Considering the distance between lengths of yarn and 
dimension of fabrics, the crimp percentage of the yarns and 
modular lengths were calculated. Similar to what was done 
for the initial state, the geometrical parameters of relaxed 
state were obtained. 

III. RESULTS AND DISCUSSION
In order to check the accuracy of the model, the predicted 
geometrical parameters of fabrics were compared with the 
experimental results. For this purpose, the predicted values 
including thread spacing (P), modular length (l), crimp 
height (h), and weave angle (q) were compared with the 
experimental data.To compare the prediction of the model 
with the experimental results, the geometrical parameters 
of fabrics in both weft and warp directions are considered 
and discussed.

A. Warp Spacing (P1)
Table V provides comparison between the theoretical and 
experimental warp spacing values for different fabrics. 
Considering the values of this table, it can be seen that the 
error percentage increases by increasing the weft density 
of samples. Increment of weft density may lead to the 
deformation of yarn cross-section, which has been ignored 
in this research. In general, there is a reasonable agreement 
between the theoretical and experimental results. 

The points plotted in Fig. 3 show that the predicted warp 
spacing is generally more than its experimental value. This 
may be due to the error calculation of the model which is 
associated with the calculation method.

B. Weft Spacing (P2)
The theoretical and experimental values of weft spacing 
shown in Table VI demonstrate that the predicted values 
are approximately close to the experiments. In most of the 

h2 (mm)h1 (mm)q2 (rad)q1 (rad)l2 (mm)l1 (mm)p2 (mm)p1 (mm)Fabric code

0.0030.3710.0030.4500.5650.9350.8580.566Y1P1

0.0050.3690.0090.6950.5730.7000.5780.573Y1P2

0.4430.0590.1060.9360.580.5530.4210.577Y1P3

0.0040.3510.0070.4140.5730.9460.8750.573Y2P1

0.0130.3420.0240.6390.5780.6810.5760.577Y2P2

0.0420.3130.0750.7910.5850.5730.4580.584Y2P3

Error (%)
 Experimental

data (mm)
 Theoretical data

(mm)
 Fabric

code

5.20.8120.854Y1P1

0.80.5730.578Y1P2

11.60.4770.422Y1P3

7.50.8140.875Y2P1

3.20.5960.577Y2P2

5.80.4870.458Y2P3

TABLE IV
THE ORETICAL RESULTS OF THE DEFORMED STRUCTURE (RELAXED STATE)

Error (%)
 Experimental

data (mm)
 Theoretical data

(mm)
Fabric code

0.20.5670.566Y1P1

-2.00.5620.573Y1P2

-4.50.5530.578Y1P3

-1.40.5660.574Y2P1

-2.80.5620.578Y2P2

-5.20.5550.584Y2P3

TABLE V
WARP SPACING VALUES

Fig. 3. Relationship between the theoretical and experimental warp 
spacing data.

TABLE VI
PICK SPACING VALUES
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fabrics, except for Y1P3, the error percentageis less than 
10%.

As can be seen in Fig. 4, the distribution of points around 
the 45°-line is uniform.

C. Modular Length of Warp (l1)
According to Table VII, the predicted modular lengths of 
warps are very close to the experimental results. Among the 
geometrical parameters, the modular length has the least 
variation during the relaxation process. It means that the 
energy differentiation in terms of modular length variation 
would be small.

As can be seen from the points plotted in Fig. 5, there is a 
quite good agreement between the theory and experiment 
of modular length of warps.

D. Modular Length of Weft (l2)
The values of Table VIII confirm that the model is able to 
predict the geometrical parameters of fabrics in relaxation 
state. Contrary to parameters obtained previously, the 
experimental values of modular length for all samples 
are more than the theoretical values of modular length. 
The correlation between the theoretical and experimental 

modular length of weft yarns has been shown in Fig. 6.

E. Weave Angle in Warp Direction (q1)
The predicted values of weave angle in warp direction 
are far from its experimental data (Table IX). This can be 
attributed to the relaxation process of fabrics. During the 
relaxation process, the swelling of fiber and yarn produced 
on wetting cause to increase the yarn diameter which has 
not been taken into account in this work. In the other hand, 
the weave angle considerably depends on the geometrical 
assumptions. Since the weave angle is significantly affected 
by the values of other parameters, unreal assumption 
regarding to the fabrics structure can deviate the values 
from the real case. The assumptions including circular 
cross-section, uniform structure along the longitudinal 
direction, perfect flexibility, and incompressibility are all 
unrealistic, leading to increase the error level. These facts 
lead to change the weave angle. Fig. 7 shows the correlation 
between the experimental and theoretical results.

F. Weave Angle in Weft Direction (q2 )
Referring to the values of Table X, the results obtained 
from the model are very far from the experimental 

Fig. 4. Relationship between the theoretical and experimental pick 
spacing values.

Error (%)
 Experimental

data (mm)
 Theoretical data

(mm)
Fabric code

1.990.9540.935Y1P1

1.820.7130.700Y1P2

1.780.5630.553Y1P3

1.770.9630.946Y2P1

1.730.6930.681Y2P2

1.720.5830.573Y2P3

 Error
(%)

 Experimental data
(mm)

 Theoretical data
(mm)

Fabric code

-2.120.5770.565Y1P1

-1.750.5830.573Y1P2

-2.410.5940.580Y1P3

-1.750.5830.573Y2P1

-1.730.5880.578Y2P2

-1.540.5940.585Y2P3

TABLE VII
MODULAR LENGTH OF WARP (L1)

TABLE VIII
MODULAR LENGTH OF WEFT (L2)

Fig. 5. Relationship between the theoretical and experimental modular 
length of warp.
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results of weave angle in weft direction. The reason of 
these differences is the same as those mentioned for the 
weave angle in warp direction. As was pointed out earlier, 
the swelling in relaxation process affects considerably the 
prediction results of model obtained for weave angle (Fig. 8). 
As shown in Fig. 9, the theoretical data of weave angle 
in weft directionare considerably smaller than the weave 
angle experimental values.

G. Weft Crimp Height (h2)
It can be inferred from the datapresented in Table XI that the 
theoretical values of weft crimp height (except for Y1P3) 
are considerably smaller than those found experimentally. 
The relationship between the theoretical and experimental 
results is plotted as points in Fig. 10. There is only a slight 
variation in weft crimp height during the relaxation process 
since the weft-wise shrinkage of fabrics is not significant. 

H. Warp Crimp Height (h1)
Considering the experimental and theoretical values of 
warp crimp height issued in Table XII, we can say, the 

model gives a reasonable approximation of this parameter, 
except Y1P3. It is well known that the fabrics have 
considerable warp-wise shrinkage which leads to the 
large variation of warp crimp height. This is probably the 

Error (%)
 Experimental data

(rad)
 Theoretical data

(rad)
 Fabric

code

23.90.59140.450Y1P1

0.60.69900.695Y1P2

-55.90.60050.936Y1P3

31.60.60510.414Y2P1

-12.00.57050.639Y2P2

-26.00.62790.791Y2P3

TABLE IX
WAVE ANGLE IN WARP DIRECTION (Q1)

Fig. 6. Relationship between the theoretical and experimental modular 
length of weft.

Fig. 7. Relationship between the theoretical and experimental weave 
angle values in warp direction.

 Error
(%)

 Experimental data
(rad)

 Theoretical data
(rad)

Fabric code

-0.18780.003Y1P1

-0.27340.009Y1P2

-0.38510.106Y1P3

-0.24510.007Y2P1

-0.30420.024Y2P2

-0.37490.075Y2P3

TABLE X
WEAVE ANGLE IN WEFT DIRECTION (Q2)

(b)
Fig. 8. Yarn diameter variation on wetting: (a) before swelling and (b) 
after swelling.

(a)
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reason of obtaining theoretical results of warp crimp height 
closer to the experiments than that of weft crimp height. 
The relationship between the theoretical and experimental 
warp crimp height values has been shown in Fig. 11.

IV. CONCLUSION
A mechanical model was generated to predict the 
geometrical parameters of relaxed state of woven fabrics 
using energy method. Assuming that the relaxed state 
of fabric is mathematically equivalent to the condition 
of minimum energy, the total potential energy of fabrics 
on loom was calculated and minimized. Comparison of 
theoretical and experimental results showed that the model 
could adequately predict warp and weft spacing in relaxed 
state, so that the maximum errors of prediction were 
about 5 and 11 percent, respectively.  Also, the difference 
between the theoretical and experimental values of modular 
length of yarns in the unit-cell (l1 and l2) showed that the 
maximum errors were about 1.9 and 2.4 percent. The 
precision of modular length prediction could be attributed 
to the accuracy of experimental measurement. While, the 
predicted values of weave angle and crimp height were 
far from the experimental results due to difficulties and 
assumptions made in measuring these parameters. In some 
cases the error of prediction was about 50 percent. It is well 
known that the yarn spacing and modular length of yarns 
are more important commercially parameters compared to 

 Error
(%)

 Experimental
data (mm)

 Theoretical 
data (mm)

Fabric code

-0.10040.003Y1P1

-0.14480.005Y1P2

-0.20080.443Y1P3

-0.13080.004Y2P1

-0.16120.013Y2P2

-0.19620.042Y2P3

TABLE XI
WEFT CRIMP HEIGHT (H2)

Fig. 9. Relationship between the theoretical and experimental weave 
angle values in weft direction.

Fig. 11. Relationship between the theoretical and experimental warp 
crimp height values.

Fig. 10. Relationship between the theoretical and experimental pick 
spacing values.

Error (%)
 Experimental

data (mm)
 Theoretical 
data (mm)

Fabric code

-22.00.45280.371Y1P1

-2.30.37760.369Y1P2

-357.80.27010.059Y1P3

-32.30.46430.351Y2P1

6.30.32060.342Y2P2

7.90.28830.313Y2P3

TABLE XII
WARP CRIMP HEIGHT (H1)
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weave angle and crimp height of yarns. It is concluded that 
the model can be applicable to predict the relaxed parameter 
of fabrics, practically. It is possible to improve the results 
of the model by taking into account the deformation of 
yarns cross-section in fabric structure.

ACKNOWLEDGEMENT
This work was supported by the Amirkabir University of 
Technology.

REFERENCES
[1]	 R. Postle, G.A. Carnaby, and S. DeJong, The 

Mechanics of Wool Structures, New York: John Wiley 
& Sons, 1988, pp. 207-209.

[2]	 D.L. Munden, “The geometry and dimensional 
properties of plain-knitted fabrics”, J. Text. Inst., vol. 
50, T448, 1959.

[3]	 J.J.F. Knapton, F.J. Ahrens, W.W. Ingenthron, and W. 
Fong, “The dimensional properties of knitted wool 
fabrics: part I: the plain-knitted structure”, Text. Res. 
J., vol. 38, pp. 999-1012, 1968.

[4]	 R. Postle, “Dimensional stability of plain-knitted 
fabrics”,  J. Text. Inst., vol. 59, no. 2, pp. 65-77, 1968.

[5]	 J.A. Smirfitt, “Worsted 1×1 rib fabrics, part I: 
dimensional properties”, J. Text. Inst., vol. 56, no. 5, 
pp. T248-T259, 1965.

[6]	 A.A.A. Jeddi and F. Zareian, “Ideal model for 1 × 1 rib 
fabric taking into account yarn swelling: guidelines 
for the use of ultrasonic relaxation”, J. Text. Inst., vol. 
97, no. 6, pp. 475-482, 2006.

[7]	 S. Mukherjee, S.C. Ray, and S.K. Punj, “A study on 
dimensional parameters of 1×1 rib produced on a flat 
bed double jersey knitting machine using ultrasonic 
technique”, Indian J. Fiber Text. Res., vol. 37, pp. 60-
67, 2012.

[8]	 L.R.G. Treloar and G. Riding, “A theory of the stress-
strain properties of continuous-filament yarns”, J. 
Text. Inst., vol. 54, pp. T156-T170, 1963.

[9]	 P. Grosberg and S. Kedia, “The mechanical properties 
of woven fabrics-part I: the initial load extension 
modulus of woven fabric”, Text. Res. J., vol. 36, pp. 
70-79, 1966.

[10]	 J.W.S. Hearle and A. Newton, “Nonwoven fabric 
studies: part XIV: derivation of generalized mechanics 
by the energy method”, Text. Res. J., vol. 37, pp. 778-
797, 1967.

[11]	 S. De Jong and R. Postle, “An energy analysis of 
the mechanics of weft-knitted fabrics by means of 
optimal-control theory part I: the nature of loop-
interlocking in the plain knitted structure”, J. Text. 

Inst., vol. 68, no. 10, pp. 307-315, 1977.
[12]	 S. De Jong and R. Postle, “A general energy analysis 

of fabric mechanics using optimal control theory”, 
Text. Res. J., vol. 48, pp. 127-35, 1978.	

[13]	 J.W.S. Hearle, P. Potluri, and V.S. Thammandra, 
“Modeling fabric mechanics”, J. Text. Inst., vol. 92, 
no. 3, pp. 53-69, 2001.

[14]	 G.A.V. Leaf and K.H. Kandil, “The initial load-
extension behavior of plain-woven fabricsˮ, J. Text. 
Inst., vol. 71, no. 1, pp. 1-7, 1980.

[15]	 H. Dabiryan, A.A.A. Jeddi, and A. Rastgoo, “Analysis 
of warp knitted fabric structure, part II: theoretical 
study on initial modulus of warp knitted fabrics 
(tricot, locknit and satin)”, J. Text. Inst., vol. 103, no. 
9, pp. 997-1011, 2012.

[16]	 H. Dabiryan, A.A.A. Jeddi, and A. Rastgoo, “Analysis 
of warp knitted fabric structure, part III: theoretical 
study on initial modulus of warp knitted fabrics 
(reverse locknit, three- and four-needle sharkskin)ˮ, 
J. Text. Inst., vol. 103, no. 11, pp. 1213-1227, 2012.

[17]	 T.V. Sagar, P. Potluri, and J.W.S Hearle, “Meso-scale 
modeling of interlaced fiber assemblies using energy 
method”, Computational Mater. Sci., vol. 28, pp. 49–
62, 2003.

[18]	 F.T. Peirce, “The geometry of cloth structureˮ, J. Text. 
Inst., vol. 28, no. 3, pp. T45-T96, 1937.	

[19]	 A. Kemp, “An extension of peirce’s cloth geometry to 
the treatment of nonlinear thread”, J. Text. Inst., vol. 
49, no. 1, pp. T44-T48, 1958.

[20]	 J.W.S. Hearle and W.J. Shanahan, “An energy method 
for calculations in fabric mechanics; part II: examples 
of the application of the method to woven fabrics”, J. 
Text. Inst., vol. 69, no. 4, pp. 92-100, 1978b.

[21]	 M.J. Avanaki, A.A.A. Jeddi, and A. Rastgoo, “A novel 
approach in geometrical-mechanical analysis of plain 
woven fabrics; initial load-extension behavior”, J. 
Text. Polym., vol. 2, no. 1, pp. 34-44, 2014.

[22]	 R.N. Manjunath and B.K. Behera, “Modelling the 
geometry of the unit cell of woven fabrics with 
integrated stiffener sections”, J. Text. Inst., vol. 108, 
no. 11, pp. 2006-2012, 2017.

[23]	 J.S. Ferranto and  S.Y. Luo, “Finite element modeling 
of plain weave fabric from an un-woven initial yarn 
configuration”, Strength Mater., vol. 47, no. 6, pp. 
903–911, 2015.

[24]	 J.D. Owen and G. Riding, “The weighted-ring 
stiffness testˮ, J. Text. Inst., vol. 55, no. 8, pp. 
T414-T417, 1964.


