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1  Abstract—Using the generalized Hausdorff-metric, two 
least-absolutes (LA) approaches to multiple fuzzy regression 
modeling are introduced for the case of crisp input-fuzzy 
output data. The main advantage of the proposed models is 
that they are not so sensitive to the outlier data points. The 
proposed models as well as two common fuzzy least-squares 
(LS) models are employed in a case study to estimate 
imperfections of cotton yarn using fiber properties in a real-
life data. In order to derive the fuzzy regression models 
between imperfections of cotton yarn and fiber properties, 
first, effective variables are selected by the statistical stepwise 
test. Then, four fuzzy models, including two new LA models 
and two LS models, are sought to fit the data set.  

Finally, two criteria are employed to evaluate the 
goodness-of-fit of models. Moreover, a predictive ability index 
is introduced and employed to evaluate the predictability of 
the models. Using these criteria, a comparative study between 
the proposed fuzzy least-absolutes regression models and 
fuzzy least-squares regression models has also been 
addressed. The comparison results reveal that the LA-fuzzy 
models perform better than the LS-fuzzy models in 
imperfections of cotton yarn estimation for the particular 
data set used in this study. 

 
Keywords: cross-validation, fuzzy least-absolutes 

regression, fuzzy least-squares regression, outlier, yarn 
quality properties 

 INTRODUCTION I.
odeling OF yarn and fiber properties have been 
popular topics in the field of textile engineering in 

recent decades. Especially, the main aim of many textile 
studies has been to predict important characteristics such 
as tensile, unevenness, and hairiness of yarn from fiber 
properties (see, e.g. [1-8]). The most popular tool to deal 
with such problems is the statistical regression analysis. 
Generally, in statistical regression, we can make estimates 
and predictions for a dependent (response) variable, based 
on a set of observed data of independent (predictor) 
variables. But, the in systems in which human intelligence 
plays a part, we usually encounter the following three 
problems: 

• The observation of variables are imprecise (fuzzy) 
rather than crisp 

• The relationship between variables is imprecise 
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• The sample size may be small due to practical 
limitations, so that we cannot justify the underlying 
basic assumptions for the basic statistical model. 

To deal with such cases, we need, therefore, to develop 
some new soft procedures, especially fuzzy regression. 
Fuzzy regression methods, in a general perspective, 
include three categories:  

I) The class of possibilistic methods: In these methods, 
which are based on the ideas proposed by Tanaka et al. [9, 
10] using the possibilistic concepts, the fuzzy regression 
problem is formulated as a mathematical programming 
problem. This approach was investigated and improved by 
several authors [2,16].  

II) The class of least squares and least absolutes 
methods: In these methods, the parameters of the model 
are estimated based on a distance on the space of fuzzy 
numbers [5,17-25]. 

III) The class of heuristic methods: This class includes 
some novel methods or some techniques which combine 
the possibilistic, least squares, least absolutes methods, and 
some other methods in classical regression (such as robust 
techniques, MARS method, piece-wise regression, etc.) in 
order to provide a fuzzy linear regression model [18,19,26-
31]. 

For more about statistical methods in fuzzy 
environments, see [32,33]. 

In recent years, various soft methods [34], especially the 
methods based on fuzzy regression models, have received 
much attention from researchers in textile engineering 
analysis. Regarding proposes of this paper, we will briefly 
review some soft methods on the topic of predicting yarn 
properties from fiber properties.  

Ertugrul and Tus [2] investigated a fuzzy linear 
programming method and studied its application in a 
textile firm. Fattahi et al. [5] studied cotton yarn 
engineering via fuzzy least-squares regression. Tavanai et 
al. [8] to analyze the color yield in polyethylene 
terephthalate dyeing with statistical and fuzzy regression 
models. Jeng-Jong [35] proposed a genetic algorithm for 
searching weaving parameters for woven fabrics. Kuo et 
al. [36] obtained a mathematical model for calculating 
extruder screw speed, gear pump speed, and winder speed 
proposed through fuzzy set theory to improve the quality 
of as-spun fibers in a melt spinning system. Majumdar et 
al. [37] presented the application of a hybrid neuro-fuzzy 
system for the prediction of cotton yarn strength from HVI 
fiber properties. A competitive study was done by Nasiri et 
al. [38] introduced a genetic-fuzzy approach to model 
polyester dyeing. Lu et al. [39] proposed a human-machine 
measure integrated fuzzy multi-criteria group decision-
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making method. The reader is referred to the paper of 
Sztandera and Pastore [34] which is a useful text on soft 
computing methods applied in textile science. 

In the present paper, we introduce a two-stage method to 
construct two robust fuzzy regression models for crisp 
input-fuzzy output data. In the first stage, using a robust 
method called M-estimation method, the effective 
variables are selected. Then, by a robust technique (based 
on the least-absolutes method) and a least-squares method, 
two fuzzy regression models are fitted to the data set. In 
this part, each approach will be followed by two models, 
one with spreads restricted in sign and the other with 
spreads unrestricted in sign. Three criteria are employed to 
evaluate the goodness-of-fit and the predictive ability of 
the obtained models. The results show that the fuzzy LA 
models predict better than the fuzzy LS models. 

This paper is organized as follows. In Section II, the 
main problem is briefly stated. Two basic fuzzy regression 
methods are explained in Sections III and IV. Three 
criteria for evaluation of the models are presented in 
Section V. In Section VI, the method of data collection is 
presented. The results and discussions of statistical tests 
and fuzzy regression models are given in Sections VII and 
VIII. Finally, in Section IX the conclusion remarks are 
presented. 

The mathematical background for statistical methods 
and fuzzy arithmetic are given in Appendices A, and B. 

 STATEMENT OF THE MAIN PROBLEM II.
Assume that, in a practical study, the observed data on 𝑛𝑛 

statistical units are as follows: 
(𝑦𝑦�1,𝒙𝒙1), … , (𝑦𝑦�𝑛𝑛,𝒙𝒙𝑛𝑛), 

where 𝒚𝒚� = (𝑦𝑦�1, … ,𝑦𝑦�𝑛𝑛)𝑡𝑡 is the vector of  symmetric 
triangular fuzzy numbers, i.e. 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖)𝑇𝑇   (𝑖𝑖 = 1, … ,𝑛𝑛), 
which determines the fuzzy observation of the dependent 
variable, and 
𝒙𝒙𝒊𝒊 = [𝑥𝑥0𝑖𝑖 , 𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑘𝑘𝑘𝑘] (𝑖𝑖 = 1 , ,… 𝑛𝑛;  𝑘𝑘 < 𝑛𝑛;  𝑥𝑥0𝑖𝑖 = 1), 

forms the vector of crisp observed independent variables. 
Without loss of generality, we can assume that 𝑥𝑥𝑗𝑗𝑗𝑗 > 0, by 
a simple translation of all data if necessary [25,40,41]. So, 
we will consider the following functional dependence 
between 𝒚𝒚𝑛𝑛×1 and 𝑿𝑿𝑛𝑛×(𝑘𝑘+1) 

𝒚𝒚�𝑛𝑛×1 = 𝑿𝑿𝑛𝑛×(𝑘𝑘+1)𝜷𝜷�(𝑘𝑘+1)×1                                                (1) 

�
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⋮
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𝑗𝑗=0 �
𝑇𝑇

�                (2) 

The procedure for estimating the fuzzy parameter 
𝜷𝜷�(𝑘𝑘+1)×1 is based on choosing the best candidate 𝜷𝜷��(𝑘𝑘+1)×1 
instead of 𝜷𝜷�(𝑘𝑘+1)×1, consisting in minimizing the total 
difference  between the observed  values of the response 

variable, 𝒚𝒚�𝑛𝑛×1, and its theoretical counterpart, 𝒚𝒚��𝑛𝑛×1, 
defined by 

𝒚𝒚��𝑛𝑛×1 = 𝑿𝑿𝑛𝑛×(𝑘𝑘+1)𝜷𝜷��(𝑘𝑘+1)×1                                                (3) 

with respect to a suitable distance [18]. 
In the sequel, for simplicity, we use 𝑿𝑿 instead of 

𝑿𝑿𝑛𝑛×(𝑘𝑘+1), 𝒚𝒚� and 𝒚𝒚�� instead of 𝒚𝒚�𝑛𝑛×1and 𝒚𝒚��𝑛𝑛×1, and 𝜷𝜷� and 𝜷𝜷�� 
instead of 𝜷𝜷�(𝑘𝑘+1)×1 and 𝜷𝜷��(𝑘𝑘+1)×1, respectively.  

  THE FUZZY LEAST-SQUARES REGRESSION MODEL III.
In the following, we briefly illustrate a common least-

squares method for estimating the fuzzy parameter 𝜷𝜷�. In 
the fuzzy least-squares method, using a distance between 
fuzzy numbers, the parameters of the model are estimated 
so that the total error would be minimized. A well-known 
distance between two symmetric triangular fuzzy numbers 
𝑀𝑀� = (𝑚𝑚, 𝛾𝛾𝑚𝑚)𝑇𝑇 and 𝑁𝑁� = (𝑛𝑛, 𝛾𝛾𝑛𝑛)𝑇𝑇 is defined as follows [21, 
22, 25] 

𝑑𝑑2�𝑀𝑀� ,𝑁𝑁�� = (𝑛𝑛 −𝑚𝑚)2 + 1
6(𝛾𝛾𝑚𝑚 − 𝛾𝛾𝑛𝑛)2                             (4)  

For estimating the fuzzy parameter 𝜷𝜷�, we should 
minimize the sum of squared errors, i.e. ∑ 𝑑𝑑2�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖�𝑛𝑛

𝑖𝑖=1 . 
Using fuzzy arithmetic methods (see Appendix A) [42], 
such an estimation problem can be stated as the following 
optimization problem 

min𝜷𝜷� �
∑ �𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑘𝑘

𝑗𝑗=0 �2𝑛𝑛
𝑖𝑖=1 +

1
6 ∑ �𝑠𝑠𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝜎𝜎𝑗𝑗𝑘𝑘

𝑗𝑗=0 �2𝑛𝑛
𝑖𝑖=1

�                                    (5) 

𝑠𝑠. 𝑡𝑡.𝜎𝜎𝑗𝑗 ,𝛽𝛽𝑗𝑗 ∈ 𝑅𝑅,   𝑗𝑗 = 0,1, … , 𝑘𝑘 
Differentiating the objective function of the above 

optimization problem with respect to the coefficients 𝜎𝜎𝑗𝑗 
and 𝛽𝛽𝑗𝑗, 𝑗𝑗 = 0,1, … , 𝑘𝑘, and setting the partial derivatives to 
0 leads to the following matrix forms 

𝑿𝑿𝑡𝑡𝑿𝑿 𝜷𝜷 = 𝑿𝑿𝒕𝒕𝒚𝒚                                                                   (6) 

𝑿𝑿𝑡𝑡𝑿𝑿 𝝈𝝈 = 𝑿𝑿𝒕𝒕𝒔𝒔                                                                    (7) 

where 𝜷𝜷 = (𝛽𝛽0, … ,𝛽𝛽𝑘𝑘) and 𝝈𝝈 = (𝜎𝜎0, … ,𝜎𝜎𝑘𝑘) are the center 
values and the spread values of the fuzzy coefficient 𝜷𝜷�, 
respectively, 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) and 𝒔𝒔 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) are the 
center values and the spread values of the fuzzy response 
𝒚𝒚�, respectively. 

It is shown that if 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿) = 𝑛𝑛 + 1, and 
(𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝒕𝒕𝒔𝒔 > 𝟎𝟎, then the least-squares optimization 
problem has unique solutions as follows  [25] 

𝜷𝜷� = (𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝒕𝒕𝒚𝒚                                                            (8) 

𝝈𝝈� = (𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝒕𝒕𝒔𝒔                                                              (9) 

Remark 1: The above mentioned conditions guarantee 
that the estimated spreads of the fuzzy parameters, i.e. 𝜎𝜎𝑗𝑗 
𝑗𝑗 = 0,1, … , 𝑘𝑘, will be non-negative. However, it is possible 
to encounter situations in which (𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝒕𝒕𝒔𝒔 < 𝟎𝟎. Under 
this circumstance, which was not considered by Xu and Li 
[25], the solutions are not guaranteed. To remove this 
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difficulty, Mohammadi and Taheri [21] suggested a 
procedure which will be our reference method when 
(𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝒕𝒕𝒔𝒔 < 𝟎𝟎 occurs. 

Remark 2: According to Chang and Lee [12] we can 
drop the above conditions. In this manner, the spreads of 
some fuzzy coefficients for the optimal model may be 
obtained as negative amounts. Note that by using this 
method, zero values would be considered for negative 
predicted spreads of fuzzy response, i.e. 𝒔𝒔� = max(𝟎𝟎,𝑿𝑿𝝈𝝈�) 
[29]. This method is called the fuzzy linear regression 
model with spreads unrestricted in signs (SUS) [12]. 

Regarding the above remarks, we will follow the LS 
method in two versions: 

1) The LS method with spreads restricted in sign 
(Remark 1); 

2) The LS method with spreads unrestricted in sign 
(LS-SUS) (Remark 2). 

 THE PROPOSED FUZZY LEAST-ABSOLUTES IV.
REGRESSION MODEL 

Although the LS approach is a popular method to 
estimate the unknown parameters, it is sensitive in terms of 
outlier data points [43,44]. In such cases, when some 
outliers exist in data set, it is usually preferred to use a 
robust method. In practice, regression modeling based on 
the least-absolutes method has been used as a robust 
method [20,24,40]. In this section, using the generalized 
Hausdorff-metric 𝐷𝐷1 on the set of symmetric triangular 
fuzzy numbers (see Appendix B) [45,46], we introduce a 
novel least-absolutes method to estimate the parameter 𝜷𝜷�. 

In this case, the least-absolutes optimization problem 
can be stated as follows 

min𝜷𝜷� 𝐷𝐷1�𝒚𝒚�,𝑿𝑿𝜷𝜷��                                                             (10) 

or equivalently 

min𝜷𝜷� �
∑ �𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑘𝑘

𝑗𝑗=0 �𝑛𝑛
𝑖𝑖=1 +

1
2 ∑ �𝑠𝑠𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝜎𝜎𝑗𝑗𝑘𝑘

𝑗𝑗=0 �𝑛𝑛
𝑖𝑖=1

�                                   (11) 

𝑠𝑠. 𝑡𝑡.𝜎𝜎𝑗𝑗 ∈ 𝑅𝑅+,𝛽𝛽𝑗𝑗 ∈ 𝑅𝑅,   𝑗𝑗 = 0,1, … , 𝑘𝑘 
which is a constrained non-linear programming problem. 
The minimization of 𝐷𝐷1 over 𝜷𝜷� can separately be solved: 
once for all possible candidates for 𝜷𝜷, and then for all 
possible candidates for 𝝈𝝈, respectively. Thus, this 
optimization problem can be rewritten as the following two 
sub-optimization non-linear programming problems 
[47,48]  

min𝜷𝜷�∑ �𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑘𝑘
𝑗𝑗=0 �𝑛𝑛

𝑖𝑖=1 �                                         (12) 

𝑠𝑠. 𝑡𝑡.𝛽𝛽𝑗𝑗 ∈ 𝑅𝑅, 𝑗𝑗 = 0,1, … ,𝑘𝑘 

min𝝈𝝈�12 ∑ �𝑠𝑠𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝜎𝜎𝑗𝑗𝑘𝑘
𝑗𝑗=0 �𝑛𝑛

𝑖𝑖=1 �                                        (13) 

𝑠𝑠. 𝑡𝑡.𝜎𝜎𝑗𝑗 ∈ 𝑅𝑅+, 𝑗𝑗 = 0,1, … , 𝑘𝑘 
In order to simplify the above optimization problems, 

we show how, by introducing additional variables, two 
linear programming problems can handle the non-linear 

optimization problems a) and b) (for more details, see, e.g. 
[47,48]). 

First, we consider the sub-optimization problem a). Let 
𝜀𝜀𝑖𝑖+ and 𝜀𝜀𝑖𝑖−, 𝑖𝑖 = 1, … ,𝑛𝑛, represent two non-negative 
variables so that 

�𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑘𝑘
𝑗𝑗=0 � = 𝜀𝜀𝑖𝑖+ + 𝜀𝜀𝑖𝑖−                                          (14) 

𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑘𝑘
𝑗𝑗=0 = 𝜀𝜀𝑖𝑖+ − 𝜀𝜀𝑖𝑖−                                             (15) 

Let us consider the following matrix notations 

𝜺𝜺𝑛𝑛×1
+ = (𝜀𝜀1+, … , 𝜀𝜀𝑛𝑛+)𝑡𝑡                                                       (16) 

𝜺𝜺𝑛𝑛×1
− = (𝜀𝜀1−, … , 𝜀𝜀𝑛𝑛−)𝑡𝑡                                                       (17) 

𝒆𝒆(𝑘𝑘+1+2𝑛𝑛) = (𝜷𝜷𝑡𝑡 (𝜺𝜺𝑛𝑛×1
+ )𝑡𝑡 (𝜺𝜺𝑛𝑛×1

− )𝑡𝑡)𝑡𝑡                                 (18) 

𝑯𝑯𝒏𝒏×(𝑘𝑘+1+2𝑛𝑛) = (𝑿𝑿 𝑰𝑰𝒏𝒏×𝒏𝒏 −𝑰𝑰𝒏𝒏×𝒏𝒏)                                    (19) 

𝒉𝒉(𝑘𝑘+1+2𝑛𝑛)×1 = �𝟎𝟎1×(𝑘𝑘+1) 𝑱𝑱1×2𝑛𝑛�
𝑡𝑡
                                  (20) 

where 𝑰𝑰𝒏𝒏×𝒏𝒏 is an identity matrix of order 𝑛𝑛, and 
 𝑱𝑱1×2𝑛𝑛denotes the 1 × 2𝑛𝑛-vector of 1’s. Now, the non-
linear optimization problem a) becomes equivalent to the 
following linear optimization problem 

min  𝒆𝒆(𝑘𝑘+1+2𝑛𝑛)  �𝒉𝒉(𝑘𝑘+1+2𝑛𝑛)×1�
𝑡𝑡𝒆𝒆(𝑘𝑘+1+2𝑛𝑛)                         (21) 

𝑠𝑠. 𝑡𝑡.  𝑯𝑯𝒏𝒏×(𝑘𝑘+1+2𝑛𝑛)𝒆𝒆(𝑘𝑘+1+2𝑛𝑛) = 𝒚𝒚𝑛𝑛×1                               (22) 

𝜺𝜺𝑛𝑛×1
+ ∈ 𝑅𝑅+𝑛𝑛, 𝜺𝜺𝑛𝑛×1

− ∈ 𝑅𝑅+𝑛𝑛,𝜷𝜷 ∈ 𝑅𝑅𝑘𝑘+1 
This problem can be solved by common software 

program. In the present work, we used MATLAB software 
[49] for numerical studies concerning the above 
optimization problem. 

The same method may easily be used to solve the 
optimization problem b). In this case, we replace 𝜷𝜷 ∈ 𝑅𝑅𝑘𝑘+1 
with 𝝈𝝈 ∈ 𝑅𝑅+(𝑘𝑘+1), i.e. all variables are assumed to be 
nonnegative. 

Remark 3: Concerning Remark 2, in fuzzy LA method, 
we can also drop the condition 𝝈𝝈 ∈ 𝑅𝑅+(𝑘𝑘+1) in the 
optimization problem. So, in this paper, we will follow the 
LA method in two versions:  

1) The LA method with spreads restricted in sign, i.e. 
considering the constraint 𝝈𝝈 ∈ 𝑅𝑅+(𝑘𝑘+1) in the 
optimization problem 

2) The LA method with spreads unrestricted in sign (LA-
SUS), i.e. considering the constraint 𝝈𝝈 ∈ 𝑅𝑅(𝑘𝑘+1) in 
the optimization problem. Using the LA-SUS method, 
zero values would be considered for negative 
predicted spreads of fuzzy response, i.e. 𝒔𝒔� =
max(𝟎𝟎,𝑿𝑿𝝈𝝈�).  

  METHODS OF EVALUATION OF THE MODEL V.
In this study, we use three well-known criteria to 

evaluate the obtained fuzzy regression models. The first 
and the second ones are common indices for evaluating the 
goodness-of-fit of the fuzzy regression models used by 
many authors [16-29,40]. The third one is proposed to 
evaluate the predictability of the fuzzy regression models. 
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 Goodness-of-Fit Indices A.
I) Mean Relative Error (MRE): This criteria, which 

was introduced by Kim and Bishu [29], is defined as  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ 𝐸𝐸�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖�𝑛𝑛
𝑖𝑖=1                                                  (23) 

where 

𝐸𝐸�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖� = ∫ �𝑦𝑦�𝑖𝑖(𝑥𝑥)−𝑦𝑦��𝑖𝑖(𝑥𝑥)�
∫ 𝑦𝑦�𝑖𝑖(𝑥𝑥)

𝑑𝑑𝑑𝑑                                           (24) 

This index is the ratio of the total difference between the 
estimated and observed membership values of response 
variable to the total observed membership values of the 
response variable. 

II) Mean Similarity Measure (MSM): This index is 
defined based on the similarity of fuzzy numbers [28,30] 
as  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ 𝑆𝑆�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖�𝑛𝑛
𝑖𝑖=1                                                  (25) 

 in which  

𝑆𝑆�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖� =
∫min�𝑦𝑦�𝑖𝑖(𝑥𝑥),𝑦𝑦��𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑

∫max�𝑦𝑦�𝑖𝑖(𝑥𝑥),𝑦𝑦��𝑖𝑖(𝑥𝑥)�𝑑𝑑𝑑𝑑
                                        (26) 

 
TABLE I 

A SUMMARY OF THE STATISTICAL RESULTS FOR FIBER AND YARN 
IMPERFECTIONS 

Properties min Max Mean S.D. 

𝑋𝑋1: Fiber length (UHML)-(mm) 28.89 30.30 29.67 0.50 

𝑋𝑋2: Mean length  (ML)-(mm) 24.51 26.21 25.31 0.52 

𝑋𝑋3: Uniformity index (U.I)-(%) 84.00 86.50 85.28 0.81 

𝑋𝑋4: Fiber bundle tenacity (gr/tex) 29.90 38.60 33.85 2.28 

𝑋𝑋5: Fiber elongation (%) 7.10 7.20 7.11 0.03 

𝑋𝑋6: Short fiber index (S.F.I)-(%) 3.00 5.30 3.79 0.64 

𝑋𝑋7: Micronaire (gr/in) 3.90 4.75 4.31 0.20 

𝑋𝑋8: Roving unevenness (CV%) 3.80 13.80 8.06 2.70 

𝑋𝑋9: Roving count (Ne) 0.89 1.42 1.11 0.19 

𝑋𝑋10: Yarn count (Ne) 15.71 32.16 23.18 5.23 

𝑋𝑋11: Fiber maturity (M.R)-(%) 83.00 86.00 84.42 0.75 

𝑌𝑌: Yarn imperfection (n/1000m) 20.00 1110 488.32 291.7 

 Predictive Ability Index B.
According to the Cross-Validation method [41], and to 

evaluate the predictability of the fuzzy regression models, 
we introduce and employ the concept of Mean Predictive 
Ability (MPA), as follows 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ 𝐸𝐸�𝑦𝑦�𝑖𝑖 ,𝑦𝑦��𝑖𝑖�𝑛𝑛
𝑖𝑖=1                                                  (27) 

in which 𝑦𝑦��𝑖𝑖 is the predicted value of the dependent variable 
with the fuzzy regression model for which the 𝑖𝑖th 
observation is left out from the data set while the 
remaining observations are used to develop the model. 

 DATA COLLECTION VI.
In this study, a total of twelve different rovings obtained 

from carded cotton were selected. The atmospheric 
conditions of spinning mills were standard. The spinning 
operations can affect the fiber properties in different ways, 
depending on the machinery line, and the adjustments 
among others. Thus, in order to minimize the random 
errors and eliminate these effects, fiber properties were 
measured from rovings (50 to 60 grams of rovings were 
untwisted carefully). Twelve cotton fiber properties (Fiber 
length (UHML)-(mm), Mean length (ML)-(mm), 
Uniformity index (U.I)-(%), Fiber bundle tenacity (gr/tex), 
Fiber elongation (%), Short fiber index (S.F.I)-(%), 
Micronaire (gr/in), Roving unevenness (CV%), Roving 
count (Ne), Yarn count (Ne), Fiber maturity (M.R)-(%), 
Yarn imperfection (n/1000m)) were measured by Premier 
HVI testing system (HFT 9000 V2). All samples (40 Yarn 
samples) were spun into yarns on a SKF lap spinner 
machine under standard conditions at yarn counts of 16, 
20, 24, 28, and 32 Ne (2 or 3 yarn counts from each roving 
according to roving count). Each yarn count was spun at 
optimum twist factor. The appropriate settings were 
adjusted on the ring spinning machine for each sample. 
Other spinning conditions were kept constant. The 
unevenness test of yarns and rovings were measured on the 
premier evenness tester (7000 V3). The values of the main 
properties of these variables are shown in Table I. 

 STATISTICAL TESTS FOR SELECTING APPROPRIATE VII.
VARIABLES 

We used the stepwise test for selecting suitable 
variables. The stepwise selection is a modification of 
forward selection in which at each step all regressors 
previously entered into the model are reassessed via their 
partial 𝐹𝐹-statistics. A regressor added at an earlier step 
may now be redundant because of the relationships 
between it and regressors now in the model. If the partial 
𝐹𝐹-statistic for a variable is less than 𝐹𝐹out, that variable is 
dropped from the model [41]. Table II presents the 
summary of stepwise selection of independent variables. 
Based on this table, the stepwise selection terminates with 

TABLE II 
A SUMMARY OF STEPWISE SELECTION OF INDEPENDENT VARIABLES 

Step Entered variable Removed variable No.  of variables in the model Partial R-square Model R-square F-value p-value 
1 𝑋𝑋10 -- 1 0.55 0.55 47.27 0.0001 

2 𝑋𝑋8 -- 2 0.13 0.68 14.65 0.0005 

3 𝑋𝑋4 -- 3 0.05 0.73 7.44 0.0098 

4 𝑋𝑋7 -- 4 0.02 0.75 2.64 0.0113 
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four variables having the highest influence on the yarn 
imperfections (𝑌𝑌) including the fiber bundle tenacity (𝑋𝑋4), 
micronaire (𝑋𝑋7), roving unevenness (𝑋𝑋8), and yarn count 
(𝑋𝑋10). Now, we recall the obtained effective independent 
variables as 

• 𝑥𝑥1: fiber bundle tenacity 
• 𝑥𝑥2: micronaire 
• 𝑥𝑥3: roving unevenness 
• 𝑥𝑥4: yarn count 

The recorded data for such variables are presented in 
Table III. 

 
TABLE III 

THE DATA SET INCLUDING CRISP OBSERVATIONS OF THE EXPLANATORY 
VARIABLES (FIBER BUNDLE TENACITY (𝑥𝑥1), MICRONAIR (𝑥𝑥2), ROVING 
UNEVENNESS (𝑥𝑥3), AND YARN COUNT (𝑥𝑥4)) AND THE FUZZY RESPONSE 

OBSERVATIONS (YARN IMPERFECTIONS (𝑦𝑦, 𝑠𝑠)𝑇𝑇) 
No. 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 (𝑦𝑦, 𝑠𝑠)𝑇𝑇 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

32.5 
32.5 
32.5 
35.5 
35.5 
35.9 
35.9 
35.9 
32.4 
32.4 

4.45 
4.45 
4.45 
4.40 
4.40 
4.45 
4.45 
4.45 
4.20 
4.20 

6.15 
6.15 
6.15 
9.00 
9.00 
4.90 
4.90 
4.90 
9.70 
9.70 

15.92 
19.71 
23.78 
15.71 
19.52 
15.89 
19.99 
24.07 
24.26 
28.81 

(245 ,24)𝑇𝑇  
(375 ,37)𝑇𝑇 
(510 ,51)𝑇𝑇  
(495 ,49)𝑇𝑇 
(760 ,38)𝑇𝑇  
(105 ,10)𝑇𝑇 
(180 ,18)𝑇𝑇 
(280 ,28)𝑇𝑇  
(465 ,46)𝑇𝑇  
(595 ,59)𝑇𝑇 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

32.4 
34.2 
34.2 
34.2 
35.6 
35.6 
35.6 
29.9 
29.9 
38.6 

4.20 
3.90 
3.90 
3.90 
4.35 
4.35 
4.35 
4.30 
4.30 
4.75 

9.70 
8.90 
8.90 
8.90 
5.00 
5.00 
5.00 
9.10 
9.10 
3.80 

32.16 
20.05 
24.13 
28.59 
15.72 
20.05 
24.07 
28.34 
32.14 
15.88 

(1555,77)𝑇𝑇 
(230 ,23)𝑇𝑇  
(435 ,43)𝑇𝑇  
(910 ,45)𝑇𝑇  
(163 ,16)𝑇𝑇  
(235 ,23)𝑇𝑇  
(275 ,27)𝑇𝑇  
(715 ,35)𝑇𝑇  
(995 ,49)𝑇𝑇  

(30 , 3)𝑇𝑇 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

38.6 
38.6 
34.0 
34.0 
34.0 
35.7 
35.7 
31.6 
31.6 
31.6 

4.75 
4.75 
4.35 
4.35 
4.35 
4.20 
4.20 
4.40 
4.40 
4.40 

3.80 
3.80 

13.80 
13.80 
13.80 
8.50 
8.50 
8.50 
8.50 
8.50 

19.78 
23.80 
20.43 
24.40 
27.82 
27.11 
31.15 
23.37 
28.63 
31.96 

(20 , 2)𝑇𝑇 
(20 , 2)𝑇𝑇 

(365 ,36)𝑇𝑇  
(565 ,56)𝑇𝑇  
(805 ,40)𝑇𝑇  
(610 ,61)𝑇𝑇  
(850 ,42)𝑇𝑇  
(565 ,56)𝑇𝑇  
(405 ,40)𝑇𝑇  
(815 ,40)𝑇𝑇 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

33.3 
33.3 
33.3 
30.2 
30.2 
30.2 
34.4 
34.4 
34.4 
33.9 

4.10 
4.10 
4.10 
4.10 
4.10 
4.10 
4.30 
4.30 
4.30 
4.40 

11.70 
11.70 
11.70 
7.60 
7.60 
7.60 
6.70 
6.70 
6.70 
9.10 

24.10 
27.32 
31.65 
16.60 
20.69 
24.40 
15.72 
19.72 
23.76 
16.11 

(415 ,41)𝑇𝑇  
(855 ,42)𝑇𝑇  
(1110,55)𝑇𝑇 
(260 ,26)𝑇𝑇  
(440 ,44)𝑇𝑇  
(775 ,38)𝑇𝑇  
(400 ,40)𝑇𝑇  
(425 ,42)𝑇𝑇  
(575 ,57)𝑇𝑇  
(145 ,14)𝑇𝑇 

 
On the other hand, it seems that there are some outliers 

in this data. Therefore, we used the M-estimation method 
for detecting outliers and providing stable results in the 
presence of outliers [43]. Table IV displays outlier point 
diagnostics. 

Standardized robust residuals are computed based on the 
estimated parameters. Both the Mahalanobis distance and 

the robust MCD (Minimum Covariance Determinant) 
distance are displayed in Table IV. Outliers are defined by 
the standardized robust residuals and robust MCD 
distances which exceed the corresponding cutoff value 
(Cutoff=3). Twelve observations displayed in Table IV are 
outliers because their standardized robust residuals exceed 
the cutoff value in absolute value. It is remarkable that, we 
used the software SAS [50] for the above statistical 
analysis. 

TABLE IV 
THE LIST OF OUTLIER OBSERVATIONS 

No. of 
outliers 

Mahalanobis 
distance 

Robust MCD 
distance 

Standardized  robust 
residual 

4 
5 
11 
12 
13 
21 
22 
28 
29 
31 
36 
37 

3.27 
2.99 
3.44 
3.21 
2.77 
2.98 
3.30 
3.56 
3.14 
3.27 
3.16 
2.03 

0.00 
0.00 
0.00 
0.59 
0.59 
0.64 
0.64 
0.72 
0.72 
1.05 
0.65 
0.14 

  9.50 
11.04 
  4.17 
 -6.83 
 -5.19 
 -5.06 
 -4.52 
   3.53 
  -4.70 
  -5.52 
    3.10 
    4.14 

TABLE V 
COMPARISON BETWEEN LA AND LS MODELS (THE MODELS WITH 

SPREADS RESTRICTED IN SIGN) 
Models MSM MRE MPA 

LA Model 0.1084 2.4281 2.7424 
LS Model 0.0653 3.3881 3.4208 

 RESULTS AND DISCUSSIONS VIII.

A. Optimal Models with Spreads Restricted in Sign 
By employing the LS method (described in Section III) 

to the data set given in Table III, the optimal model is 
obtained as follows 

𝑦𝑦��𝐿𝐿𝐿𝐿 = (847.12,0)𝑇𝑇 + (−18.71,0)𝑇𝑇𝑥𝑥1 +                       (28) 

           (−179.64,0)𝑇𝑇𝑥𝑥2 + (24.24,2.63)𝑇𝑇𝑥𝑥3 + 

           (37.26, 1.34)𝑇𝑇𝑥𝑥4 

Moreover, using the LA method (described in Section 
IV) the optimal model is obtained as follows 

𝑦𝑦��𝐿𝐿𝐿𝐿 = (313.99,0)𝑇𝑇 + (−20.29,0)𝑇𝑇𝑥𝑥1 +                        (29) 

             (−39.25,0)𝑇𝑇𝑥𝑥2 + (7.30,3.04)𝑇𝑇𝑥𝑥3 + 

             (41.43,0.54)𝑇𝑇𝑥𝑥4 

A comparison between these models is done based on 
the goodness-of-fit criteria as well as the mean predictive 
ability index. The results are summarized in Table V. 

B. Optimal Models with Spreads Unrestricted in Sign 
By employing the LS-SUS method to the data set given 

in Table III, the optimal model is obtained as follows 
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𝑦𝑦��𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆 = (847.12,109.18)𝑇𝑇 +                                   (30) 

                      (−18.71,− 1.57)𝑇𝑇𝑥𝑥1 + 

                      (−179.64,− 13.82)𝑇𝑇𝑥𝑥2 + 

                      (24.24,1.72)𝑇𝑇𝑥𝑥3 + (37.26, 1.13)𝑇𝑇𝑥𝑥4 
 

In addition, the LA-SUS method yields the following 
optimal model 

𝑦𝑦��𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆 =  (313.99,154.29)𝑇𝑇 +                                   (31) 

                     (−20.29,− 2.05)𝑇𝑇𝑥𝑥1 + 

                     (−39.25,− 19.59)𝑇𝑇𝑥𝑥2 + 

                     (7.30,1.09)𝑇𝑇𝑥𝑥3 + (41.43,1.06)𝑇𝑇𝑥𝑥4  

 
TABLE VI 

COMPARISON BETWEEN LA-SUS AND LS-SUS MODELS (THE MODELS 
WITH SPREADS UNRESTRICTED IN SIGN) 

Models MSM MRE MPA 
LA-SUS Model 0.1272 1.8555 2.2192 
LS-SUS Model 0.0552 2.2495 2.3883 

 
The results of comparison between these models are 

given in Table VI. As it is shown in Tables V and VI, the 
LA method provides models with more efficiency than the 
LS models, with both spreads restricted in sign and spreads 
unrestricted in sign. Moreover, except the MSM for the LS 
method, the models with spreads unrestricted in sign have 
higher goodness-of-fit indices as well as higher predictive 
ability index than those of the models with spreads 
restricted in sign. 

 Prediction of a New Case C.
The above models can also be adopted for forecasting 

the amount of response variable for new collected values 
of explanatory variables. For example, suppose that for a 
new sample we observe (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = (33,4.50,12,21) 
for the explanatory variables and we want to forecast the 
amount of the response variable. By substituting these 
values into the models with spreads restricted in sign, the 
predicted responses based on the LS model and the LA 
model are obtained as follows 

𝑦𝑦��𝐿𝐿𝐿𝐿 = (494.65,59.70)𝑇𝑇                                                  (32) 

𝑦𝑦��𝐿𝐿𝐿𝐿 = (425.43,47.82)𝑇𝑇                                                  (33) 

So, according to the LS model, the predicted value of 
yarn imperfection is (494.65,59.70)𝑇𝑇. It means that the 
value of yarn imperfection is about 494.65 with a spread 
value of 59.70. According to the LA model, the predicted 
value of yarn imperfection is (425.43,47.82)𝑇𝑇, i.e. it 
would be about 425.43 with a spread value of 47.82. The 
membership functions of such fuzzy numbers are shown in 
Fig. 1. 

Similarly, by substituting the new value 
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = (33,4.50,12,21) into the models with 

spreads unrestricted in sign, the predicted responses based 
on the LS-SUS model and  

the LA-SUS model are obtained as follows: 

(𝑦𝑦�𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆, 𝑠̂𝑠𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆)𝑇𝑇 = (494.65,39.55)𝑇𝑇                       (34) 

(𝑦𝑦�𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆, 𝑠̂𝑠𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆)𝑇𝑇 = (425.43,33.83)𝑇𝑇                       (35) 

 

 
Fig. 1. Predicted values based on the optimal models with spreads 
restricted in sign. 

 

 
Fig. 2. Predicted values based on the optimal models with spreads 
unrestricted in sign. 

Therefore, according to the LS-SUS model the predicted 
value of yarn imperfection is (494.65,39.55)𝑇𝑇, i.e. it is 
about 494.65 with a spread value of 39.55, and according 
to the LA-SUS model the predicted value of yarn 
imperfection is (425.43,33.83)𝑇𝑇, i.e. it is about 425.43 
with a spread value of 33.83. The membership functions of 
the predicted values are shown in Fig. 2.  

It is remarkable that, the prediction of yarn imperfection 
based on the LA and LA-SUS models has more precision 
than those of the LS and LS-SUS models. Note that the 
vagueness (imprecision) in prediction by LA and LA-SUS 
models are 47.82 and 33.83, respectively, while the 
vagueness (imprecision) in prediction by LS and LS-SUS 
models are 59.70 and 39.55, respectively. 

 CONCLUSION AND REMARKS IX.
In this paper, we introduced some novel models, with 

minimum random errors and maximum accuracy, to 
predict the imperfections of ring spun cotton yarns using 
fiber properties. In this regard, the following fuzzy 
regression models: 

   1) Least squares fuzzy regression model with spreads 
unrestricted in sign; and 

377.61                425.43 
           434.95 473.25  494.65  554.35  

1                

391.60                425.43  494.65  534.20  455.10  

1                
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   2) Least absolutes fuzzy regression model with 
spreads unrestricted in sign, 
are originally defined and applied for the first time in the 
field of textile engineering. The unrestricted in sing idea 
for estimating fuzzy parameters of the models was first 
introduced by Chang and Lee [12]. So, by the inception of 
this work we defined the above two new original fuzzy 
regression models. We also defined the least absolutes 
fuzzy regression model with spreads restricted in sign 
based on the definition of the generalized Hausdorff-metric 
between fuzzy numbers (see also [40]). 

The application of this method is given for the first time 
in the present paper in textile engineering. Finally, in order 
to provide a competitive study the proposed fuzzy 
regression models are compared with the existing least 
squares fuzzy regression model proposed by Xu and Li 
[25]. By the results of the applied numerical example we 
concluded which kind of the fuzzy regression models used 
in this application is the best. Note that this conclusion is 
based on the data set used in this application.  

It is remarkable that generally talking about the 
performance of any fuzzy regression model needs a variety 
of different examples. But the data sets used in the 
examples given in this paper have been collected in the 
real world providing the competitive study more strong. To 
this end, we used untwisted rovings for measuring fiber 
properties. We produced the cotton yarns with optimum 
twist factor due to the maximum performance of length 
and fineness of fibers in yarn. Because of some limitations 
in measurements, the observed data and/or the 
relationships among variables might not be considered as 
crisp quantities. Thus, commonly used LS fuzzy multiple 
linear regression models were adapted for the estimation of 
yarn imperfections. Concerning some outliers in data set, 
two novel LA fuzzy multiple linear regression models 
were also used for such estimations. The results indicate 
that the proposed robust methods are able to determine the 
regression coefficients with better explanatory powers. 
Also, yarn imperfections are influenced by fiber tenacity, 
micronaire, roving unevenness, and yarn count. Finally, 
four optimal models indicate that increasing roving 
unevenness, and yarn count, will increase the yarn 
imperfections (positive effect). Moreover, increasing fiber 
tenacity and fiber micronaire will reduce the yarn 
imperfections (negative effect). 

The proposed robust approaches can be extended to 
other cases in textile engineering where the sample size is 
small and/or the data are non-precise (fuzzy), and/or there 
are some outliers in the data set. Furthermore, the study of 
combined models, using the robust fuzzy regression and 
neural networks for the case of huge sample size (including 
outliers) is a potential subject for further research. 

  APPENDIX A: ELEMENTARY FUZZY ARITHMETIC X.

A fuzzy set 𝐴̃𝐴 on the universal set 𝑋𝑋 is described by its 
membership function 𝐴̃𝐴(𝑥𝑥):𝑋𝑋 → [0,1]. In this paper, we 
assume that 𝑋𝑋 = 𝑅𝑅, the set of real numbers. The crisp set 
𝐴𝐴𝛼𝛼 = �𝑥𝑥 ∈ 𝑅𝑅|𝐴̃𝐴(𝑥𝑥) ≥ 𝛼𝛼�, 𝛼𝛼 ∈ (0,1] is called the 𝛼𝛼-cut of 

𝐴̃𝐴, and for 𝛼𝛼 = 0 we assume 𝐴𝐴0 = 𝑐𝑐𝑐𝑐�𝑥𝑥 ∈ 𝑅𝑅|𝐴̃𝐴(𝑥𝑥) > 0�, 
where 𝑐𝑐𝑐𝑐 is the closure operator. A fuzzy set of 𝑅𝑅 whose 𝛼𝛼-
cuts are non-empty closed intervals, for each 𝛼𝛼 ∈ [0,1] is 
called a fuzzy number. 

 

  
 
Fig. 3. The membership function and the 𝛼𝛼-cut of triangular fuzzy 
number 𝑁𝑁� = (7,4,6)𝑇𝑇. 

 
A specific class of fuzzy numbers on 𝑅𝑅, which is rich 

and flexible enough to cover most of the applications, is 
the so-called triangular fuzzy numbers 𝑁𝑁� = (𝑛𝑛, 𝑙𝑙, 𝑟𝑟)𝑇𝑇 with 
central value 𝑛𝑛 ∈ 𝑅𝑅, and left and right spreads 𝑙𝑙 ∈ 𝑅𝑅+ and 
r∈ 𝑅𝑅+. The membership function and the 𝛼𝛼-cut of the 
triangular fuzzy number 𝑁𝑁� are as follows 

𝑁𝑁�(𝑥𝑥) = �
𝑥𝑥−(𝑛𝑛−𝑙𝑙)

𝑙𝑙
, 𝑥𝑥 ∈ [𝑛𝑛 − 𝑙𝑙,𝑛𝑛]

(𝑛𝑛+𝑟𝑟)−𝑥𝑥
𝑟𝑟

, 𝑥𝑥 ∈ [𝑛𝑛,𝑛𝑛 + 𝑟𝑟]
                                (36) 

𝑁𝑁𝛼𝛼 = [𝑛𝑛 − (1 − 𝛼𝛼)𝑙𝑙,𝑛𝑛 + (1 − 𝛼𝛼)𝑟𝑟] = [𝑁𝑁𝛼𝛼𝑙𝑙 ,𝑁𝑁𝛼𝛼𝑟𝑟]           (37) 

 𝛼𝛼 ∈ [0,1] 

For 𝑙𝑙 = 𝑟𝑟 the triangular fuzzy number 𝑁𝑁� is called 
symmetric and is abbreviated by 𝑁𝑁� = (𝑛𝑛, 𝑙𝑙)𝑇𝑇. As an 
example, the membership function and the 𝛼𝛼-cut of 
triangular fuzzy number 𝑁𝑁� = (7,4,6)𝑇𝑇, which are as 
follows, 

 𝑁𝑁�(𝑥𝑥) = �
𝑥𝑥−3
4

, 𝑥𝑥 ∈ [3,7]
13−𝑥𝑥
6

, 𝑥𝑥 ∈ [7,13]
                                         (38) 

𝑁𝑁𝛼𝛼 = [7 − 4(1 − 𝛼𝛼), 7 + 6(1 − 𝛼𝛼)]                              (39) 

 = [3 + 4𝛼𝛼, 13 − 6𝛼𝛼] 

𝛼𝛼 ∈ [0,1] 

are depicted in Fig. 3. 
The algebraic operations of fuzzy numbers have been 

developed on the basis of Zadeh's extension principle [42]. 
Specially, if 𝑀𝑀� = (𝑚𝑚, 𝑙𝑙𝑚𝑚, 𝑟𝑟𝑚𝑚)𝑇𝑇 and 𝑁𝑁� = (𝑛𝑛, 𝑙𝑙𝑛𝑛, 𝑟𝑟𝑛𝑛)𝑇𝑇 are 
two triangular fuzzy numbers and γ  is a real number, then 

𝛾𝛾𝑀𝑀� = �
(𝛾𝛾𝛾𝛾, 𝛾𝛾𝑙𝑙𝑚𝑚, 𝛾𝛾𝑟𝑟𝑚𝑚)     𝛾𝛾 > 0
𝐼𝐼{0}                           𝛾𝛾 = 0
(𝛾𝛾𝛾𝛾, |𝛾𝛾|𝑟𝑟𝑚𝑚, |𝛾𝛾|𝑙𝑙𝑚𝑚) 𝛾𝛾 < 0

                                (40) 

𝑀𝑀� + 𝑁𝑁� = (𝑚𝑚 + 𝑛𝑛, 𝑙𝑙𝑚𝑚+𝑙𝑙𝑛𝑛, 𝑟𝑟𝑚𝑚 + 𝑟𝑟𝑛𝑛)𝑇𝑇                              (41) 

where 𝐼𝐼𝐴𝐴 stands the characteristic function of a crisp set 𝐴𝐴. 

3                3+4a                7               13-6a                13               

1                

a 
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 APPENDIX B: THE HAUSDORFF-METRIC AND XI.
ITS GENERALIZATION 

Let 𝐾𝐾𝑐𝑐(𝑅𝑅) be the family of all non-empty compact 
convex sets on 𝑅𝑅. The Hausdorff-metric between sets 
𝐴𝐴,𝐵𝐵 ∈ 𝐾𝐾𝑐𝑐(𝑅𝑅) is defined as follows [45], [46]  

𝑑𝑑𝐻𝐻(𝐴𝐴,𝐵𝐵) = max {sup𝑏𝑏∈𝐵𝐵inf𝑎𝑎∈𝐴𝐴|𝑎𝑎 − 𝑏𝑏|,                         (42) 

sup𝑎𝑎∈𝐴𝐴inf𝑏𝑏∈𝐵𝐵|𝑎𝑎 − 𝑏𝑏|} 

In special case, if 𝐼𝐼1 = [𝑎𝑎1,𝑎𝑎2] and 𝐼𝐼2 = [𝑏𝑏1, 𝑏𝑏2] are two 
intervals on 𝑅𝑅, then, the Hausdorff-metric between 𝐼𝐼1 and 
𝐼𝐼2 is given by 

𝑑𝑑𝐻𝐻(𝐼𝐼1, 𝐼𝐼2) = max{|𝑎𝑎1 − 𝑏𝑏1|, |𝑎𝑎2 − 𝑏𝑏2|}                         (43) 

= mid𝐼𝐼1 − mid 𝐼𝐼2| + |spr 𝐼𝐼1 − spr 𝐼𝐼2| 

where mid𝐼𝐼1 = a1+a2
2

, and 𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼1 = 𝑎𝑎2−𝑎𝑎1
2

 . 
The generalized Hausdorff-metric between fuzzy 

numbers 𝐴̃𝐴 and 𝐵𝐵�  is defined as follows [45], [46]  

𝐷𝐷𝑝𝑝�𝐴̃𝐴,𝐵𝐵�� = ��∫ [𝑑𝑑𝐻𝐻(𝐴𝐴𝛼𝛼,𝐵𝐵𝛼𝛼)]𝑝𝑝𝑑𝑑𝑑𝑑1
0 �

1
𝑝𝑝 𝑝𝑝 ≥ 1

sup𝛼𝛼∈[0,1]𝑑𝑑𝐻𝐻(𝐴𝐴𝛼𝛼,𝐵𝐵𝛼𝛼)     𝑝𝑝 = 1
              (44) 

Specially, the generalized Hausdorff-metric between    
symmetric triangular fuzzy numbers if 𝑀𝑀� = (𝑚𝑚, 𝑙𝑙𝑚𝑚)𝑇𝑇 and 
𝑁𝑁� = (𝑛𝑛, 𝑙𝑙𝑛𝑛)𝑇𝑇 is as follows 

𝐷𝐷1�𝑀𝑀� ,𝑁𝑁�� = |𝑚𝑚 − 𝑛𝑛| + 0.5|𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑛𝑛|                             (45) 

𝐷𝐷∞�𝑀𝑀� ,𝑁𝑁�� = |𝑚𝑚 − 𝑛𝑛| + |𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑛𝑛|                                 (46) 
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