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Abstract- In this study, the parameters of linear Jeffrey’s 
model are estimated using imperialist competitive algorithm 
to simulate the compression behavior of artificial grass under 
dynamic loading. To this end, a viscoelastic model is used 
to explain this behavior according to ISO 2094. The model 
consists of a linear spring and a dashpot set parallel to each 
other. This combination is placed in series with a linear dashpot. 
The Fourier transform periodic excitation is converted to the 
summation of harmonic forces. Then, differential equations of 
the system motion are solved analytically. The result predicted 
for the compression behavior of artificial grass in dynamic 
loading is compared with the experimental results. According 
to the results, the average value of error for prediction of the 
compression behavior is 5.68%. Therefore, the linear Jeffreyʼs 
II model has a high ability to predict the compression behavior 
of artificial grass under dynamic loading.  

Keywords: compression, artificial grass, linear Jeffrey’s II 
model, imperialist competitive algorithm, dynamic loading, 
fourier transform  

I. INTRODUCTION

Artificial grass has various applications, such as sporty, 
decorative, paving, roof garden, and public landscape 

[1]. These textiles are subjected to different kinds of forces 
and deformations. One of the important deformations is 
compression and recovery after the load removal. It has 
been shown that the loss of thickness in artificial grass is 
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highly affected by their compression behavior.
In recent years, many researchers have taken interest 

in the experimental study of the compression of textile 
product under dynamic loading. Sengupta et al. [2]  
found that once the ratio of the reinforcing material 
weight to the layer weight is decreased, the loss of 
thickness is reduced in dynamic loading. Kothari and 
Das [3] investigated the effect of dynamic loading on the 
compression properties of three types of fabrics: polyester 
needle-punched spun-bond, polypropylene needle-punched 
surface calendared spun-bond, and polypropylene thermally 
bonded spun-bond fabrics. They observed that polyester 
needle-punched spun-bond fabrics underwent the highest 
reduction in thickness. It is followed by needle-punched 
surface calendared spun-bond and thermally bonded spun-
bond fabrics. A rheological model consists of mechanical 
elements to explain the behavior of nonwoven fabrics 
under compression load is developed by Krucinska et al.  
[4]. The effect of dynamic loading on jute and jute-
polypropylene blended needle-punched nonwoven fabrics 
was investigated by Sengupta et al. [5]. As they observed, 
with an increase in the cycles of dynamic loading, the 
loss of thickness increased too. It was also found that 
the loss of thickness decreases with an increase in punch 
density, depth of needle penetration, and area density too. 
Debnath and Madhusoothanan [6] studied the effects of 
fabric weight, fiber cross-sectional shapes, and reinforcing 
materials on the compression properties of polyester needle-
punched nonwoven fabrics including initial thickness, the 
rates of compression, thickness loss, and compression 
resilience. Their results showed that the initial thickness, 
compression, and thickness loss are higher in fabrics with 
no reinforcing materials. Das et al. [7] investigated the 
effects of certain parameters on the compression properties 
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of needle-punched nonwoven fabrics. Those parameters 
included fabric mass per unit area, needling density and 
the proportion of shrinkable acrylic fibers in the blend. It 
was shown that needling density and mass per unit area 
have significant effects on the compression, recovery, 
and resilience of needle-punched nonwoven fabrics, but 
shrinkable acrylic proportion has no significant effect 
before steam treatment. However, after steam treatment, 
the proportions of shrinkable acrylic have significant effect 
on these parameters. Ceilk and Koc [8] investigated the 
thickness loss of Wilton-type carpets with different pile 
materials (e.g. wool, acrylic, and polypropylene) under 
dynamic loading. The statistical evaluations showed that 
pile materials and the number of impacts have significant 
effects on the mean thickness and thickness loss. For all the 
samples, it was observed that an increase in the number of 
impacts led to a decrease in mean thickness. Also, it was 
found acrylic carpets, compared to other carpets, are more 
capable of recovery after that dynamic loads are removed. 
Bariagi et al. [9] investigated the compression property of 
nonwoven fabrics under different pressures. They showed 
that compression and recovery percentages for 1 kPa to  
9 kPa loads are higher than those for 1 kPa to 5 kPa loads 
for all samples. This is due to the higher compactness and 
packing fraction after the first-step loading. Vuruskan et al. 
[10] examined the influence of pile density and pile height 
on the thickness loss of carpets which were exposed to 
dynamic loading under different impacts. It was found that 
both pile density and pile height parameters have significant 
effects on the compression properties of carpets. A linear 
viscoelastic model for the recovery behavior of the machine-
made carpet after a brief static loading was presented by 
Jafari and Ghane in 2016 [11]. Different combinations 
of spring and damper systems were considered to model 
the mechanical behavior of carpets. Their results showed 
that there was a reasonably good agreement between the 
Jeffrey’s model and the experimental result. The results 
also revealed the linear standard model has poor regression 
for the recovery properties of cut pile carpets after static 
loading. Khavari and ghane in 2017 [12] used three different 
models to investigate the compression, decompression, 
and recovery of cut pile carpets under constant rate of 
compression. Maxwell mechanical model, linear and 
nonlinear three-element models were used to simulate the 
compression and recovery behavior of the carpet samples. 
Results showed that the three-element model consists of 
a Maxwell body paralleled with a non-linear spring could 
explain compression and decompression behavior more 
accurately than Maxwell and linear models. Jafari and 
Ghane in 2017 [13] studied the effect of UV radiation on the 
recovery behavior of pile carpet after static loading through 

analytical and viscoelastic modeling. They showed that the 
thickness loss and the maximum compression were both 
higher at longer UV exposure times. In subsequent work 
by Jafari and Ghane in 2018 [14], two different mechanical 
models including linear and nonlinear Jeffrey’s model were 
used to investigate the recovery property of machine made 
carpet under heavy static loading. Their results showed that 
the nonlinear Jeffrey’s model indicates less value of speed 
of recovery at zero time in comparison to the linear model.
So far, various experimental studies have been conducted 
on the compression behavior of textile productions under 
dynamic loading. In this study, we use the analytical 
investigation for the first time to predict the compression 
behavior on artificial grass. Thus, the aim of this study is to 
present a mechanical model based on a mass-spring-dashpot 
and estimate its parameters using imperialist competitive 
algorithm to explain the compression properties of artificial 
grass under dynamic loading.

A. Mechanical Model
To investigate the compression behavior of artificial grass, 
a mechanical model known as Jeffrey’s II model is used in 
this section. It consists of a Voigt-Kelvin unit that is placed 
in series with a linear dashpot. The schematic diagram of 
the model is presented in Fig. 1.

As the figure suggests, F is the compressive force 
applied to the model, k is the linear spring constant (N/m), 
and c1 and c2  are the dashpot constants (N.s/m).

In a Jeffrey’s II model the forces in the dashpot c1 and in 
the Voigt-kelvin element are the same. So, the compressive 
force is obtained using Eqs. (1) and (2) [15]; hence, 

(1)

(2)

Where, x and y are the textile and Voigt-Kelvin unit 

Fig. 1. Linear Jeffrey’s model.

2F ky c y= + 

1F c (x y)= − 
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displacements, respectively.
As shown in Fig. 2, in dynamic loading, force F is a 

periodic impact force. Therefore, it can be expressed in the 
form of a Fourier series expansion with a set of harmonic 
forces in accordance with Eq. (3) [16]:

(3)

Where, F(t) is a periodic function with periodic interval T. 
Parameters fn and pn are obtained using Eqs. (4) and (5):

(4)

(5)

In which:

(6)

(7)

Also, Eq. (8) can be obtained by the substitution of Eqs. (4) 
and (5) in Eq. (3) as follows:

(8)

B. Compression
According to Eq. (8), force F consists of three parts 
including the constant force (F̂0t0/T), cosine terms  
(F̂0/nπ).sin(2πn/T).t0.cosωnt and sinusoidal terms (F̂0/nπ)
(1-cos 2πn/T).t0).sinωnt. Since the model is linear, the 
superposition principle is applied to it. So, the response 
for each part is obtained individually. The response of the 
system to periodic loads can be obtained by the sum of the 
responses of individual parts.

C. Compression in Terms of Constant Force
By substituting of the constant force (F̂0t0)/T in Eqs. (1) and 
(2), the following expressions can be achieved:

(9)

(10)

As Eqs. (9) and (10) are solved, the textile displacement (x) 
is determined as follows:

(11)

D. Compression in Terms of Cosωnt 
Once the cosine terms are substituted in Eqs. (1) and (2), 
the following expressions are achieved: 

(12)

(13)

(14)

The textile displacement for this case can be obtained by 
solving Eqs. (12) and (13) as follows:

(15)

E. Compression in Terms of Sinωnt 
By the substitution of the sinusoidal terms in Eqs. (1)  
and (2), the following expressions can be achieved: 

(16)

(17)

In which:

(18)

If parameter ‘y’ is calculated from Eq. (16) and the response 
to Eq. (17) is substituted, the displacement of the textile 
can be derived as follows:

(19)

The responses of Eqs. (1) and (2) to periodic excitation (3)  
can be obtained by the superposition of responses (11), 
(15), and (19) as follows:

03 n 1F sin t c (x y)w = − 

Fig. 2. Force F as a periodic impact force.
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(20)

Where, constants A and B can be determined using the 
initial conditions, i.e. x(t=0)=0 and ẋ(t=0)=0.

F. Estimation of the Excitation Force Amplitude
The maximum compression of the textile occurs when the 
velocity of the weight-piece becomes zero. In this state, 
dashpot force becomes zero. It can be ignored from the 
Jeffrey’s II model. Therefore to estimate the parameter 
F̂0, the model was simplified as a mass and a linear spring 
according to Fig. 3.

The principle for the energy conservation of the system 
between the mass releasing time and the end time of 
impacts can be written as follows:
Parameter x can be calculated through solving Eq. (21) as 
follows:

(21)

The impact force is calculated by:

(22)

(23)

The technical data used for the estimation of the amplitude 
of the excitation force are presented in Table I.

II. EXPERIMENTAL
A. Materials and Methods
In this study, artificial grass from Zarifmosavar et al. [17] 
with average specification presented in Table II was used 

for samples. 
The initial thickness of the sample under a static 

pressure of (2±0.2) kPa was measured using a digital 
thickness tester made by Reessanj [18], as shown in Fig. 4.  
The measurement was based on the standard ISO 1765 
[19]. The tester had an accuracy of 0.01 mm. According to 
the standard method, the sample was cut into 0.1×0.1 m2  
pieces. Five samples were prepared for each test and the 
mean value of the measurements was recorded. All the 
experiments were performed under the standard conditions 
of 20±2 °C and 65±2 RH% [20].

Fig. 5 shows a schematic of the compression value of the 
artificial grass under dynamic loading. As shown, x0 is the 
initial thickness, x1 refers to the thickness of the artificial 
grass after the compressive force applied to sample surface. 
The displacement is defined as (x0-x1). An increase in the 
number of impacts led to an increase in the displacement.

The thickness reduction of the artificial grass samples 

Fig. 3.  Devised model to estimate the parameter F̂0.
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2

= − +
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x

k
+ +

=

Parameter Value

m (g) 1279

g (m/s2) 9.8

k (N/m) 3.9×105

 h (mm) 63

TABLE I
TECHNICAL DATA USED FOR ESTIMATION OF F̂0

Specification Value

Warp density (dm) 13

Weft density (dm) 18

Initial height of pile (mm) 12.15

Pile materials            PP 6-thereds+PE 2-theards 	

Pile count (dtex) 2200 PP+PE

Yarn profile    PE, monofilament+PP, curly fiber

Fibers color Green+Lemon yellow

TABLE II
SPECIFICATIONS OF ARTIFICIAL GRASS SAMPLE 

Fig. 4. Determination of thickness device.    
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was measured under dynamic loading. In order to measure 
the thickness reduction rate in dynamic loading, the 
samples were placed under dynamic loading in accordance 
with Standard ISO 2094 [21]. This standard specifies 
a method to determine the thickness loss of textile floor 
coverings under dynamic loading. According to ISO 2094, 
the weight-piece of a total mass (beater) 1279 g±13 g falls 
freely under gravity from a height of 63.5 mm±0.5 mm  
on to the specimen every 4.3 s±0.3 s. The thickness 

measurements are made at intervals of up to 1000 impacts.
A laboratory dynamic loading device made by Nasj Sanj 
from Iran was used to simulate the application of the 
dynamic loading, as shown in Fig. 6. 

The samples were placed between two jaws and 
subjected to 50 impacts. Then the sample thickness in 
the two places was measured immediately. The loss of 
thickness in the samples under 50, 100, 200, 300, 500, 700, 
and 1000 impacts was also measured.

The images of sample before and after the test are 
presented in Fig. 7.

B. Imperialist Competitive Algorithm (ICA)
The imperialist competition algorithm (ICA) is an 
evolutionary computational method that finds the optimal 
answer to various optimization problems. This method 
provides an algorithm for solving mathematical problems 
by modeling [22]. In terms of application, the algorithm 
is in the category of evolutionary optimization algorithms 
such as genetic algorithms, particle swarm optimization, 
ant colony optimization, annealed simulation algorithm 
placed. Like all the algorithms in this category, the imperial 
competition algorithm forms the initial set of possible 
solutions. These early solutions are also known in the 

Fig. 5. Schematic diagram of thickness measurement. 

Fig. 6. A dynamic loading device.

  

	                 (a)			                  (b)

Fig. 7. Images of sample: (a) before loading and (b) after loading.

 Fig. 8. Basic foundations of this algorithm are assimilation, imperialistic competition, and revolution [23].
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genetic algorithm as “chromosome”, in the particle swarm 
algorithm as “particle”, and in the imperial competition 
algorithm as “country”. The imperial competition 
algorithm with the specific process gradually improves 
these initial solutions (countries) and ultimately provides 
the appropriate solution to the optimization problem.

The flowchart of the imperialist competitive algorithm 
is shown in Fig. 8.

C. ICA Parameter Tuning
The important stage in the design of the experiment is the 
selection of the control factor. Table III represents ICA 
parameters used for initializing the optimization process. 
These parameters have been allowed to vary there different 
levels.

One of the important components of the imperialist 
competitive algorithm is the calibration of parameters 
which impress upon the performance of the algorithm. 
To define ICA parameter value and investigated how the 
mean and different parameter affect the model performance 
proposed, the Taguchi design of experiment is utilized.

D. Taguchi Method
The Taguchi method is a well-known technique that 
provides a systematic and efficient methodology for process 
optimization and is a powerful tool for the design of high 

quality systems [24]. It is commonly used in improving 
industrial product quality due to the proven success [25]. 
With the Taguchi method, it is possible to significantly 
reduce the number of experiment. The Taguchi method is not 
only an experimental design technique, but also a beneficial 
technique for high-quality system design. This technique 
helps to study the effect of many factors (variables) on 
the desired quality characteristics most economically. By 
studying the effect of individual factors on the results, the 
best factor combination can be determined.

By referring to the Taguchi standard arrays table, 
orthogonal arrays  L27 , as the most suitable design, is used 
to tune the ICA parameters. Optimization was performed 
by MATLAB 2014. Fig. 9 shows the S/N ratio plot for each 
level of the factors of ICA after the experimental design 
for the problem mentioned. The results obtained by the 
Taguchi method indicated that A(3), B(3), C(1), D(1), E(1), 
and F(2) are the best combination of parameter for ICA.

III. RESULTS AND DISCUSSION
It should be mentioned that five samples were tested and 
the results were recorded based on the displacement value 
and standard deviation (SD) of the measurements, as 
illustrated in Table IV. 

In this study, the compression behavior of artificial grass 
under dynamic loading was investigated. Eq. (20) was 

Level
Control parameters

321

604020 Number of generationA

2.21.50.7Assimilation coefficientB

503010Number of imperialsC
2.21.50.7Colonies share coefficientD
500300100Number of countriesE
0.50.30.15Revelation rateF

TABLE III
ICA PARAMETERS

Fig. 9. Mean S/N ratio plot for each level of ICA factors.



AZAMI ET AL.: PARAMETER ESTIMATION OF VISCOELASTIC MODEL TO SIMULATE THE ...    				           9

then adapted to the experimental data by using imperialist 
competitive algorithm. Determination of the best answer 
allowed the extraction of the linear Jeffreyʼs II models 

parameters. The parameters are presented in Table V.
Fig. 10 shows the changes of force and displacement 

versus time on a larger scale under four impacts.
Fig. 11 shows the experimental data and the results 

obtained from the linear Jeffreyʼs II model for the 
compression behavior (Eq. (20)) of the artificial grass 
samples after the exertion of 1000 impacts under dynamic 

Impact (No.) Time (s) Displacement (mm) SD

0 0 0.00 0.00

50 215 2.96 0.21

100 430 4.7 0.25

200 860 5.72 0.26

300 1290 6.3 0.33

500 2150 6.8 0.28

700 3010 7.02 0.24

1000 4300 7.00 0.21

TABLE IV 
DISPLACEMENT OF THE ARTIFICIAL GRASS SAMPLES UNDER DYNAMIC LOADING

B
(m)

A
(m/s)

k
(N/m)

c2

(N.s/m)
c1

(N.s/m)Model

6.8×10-32.7×1073.9×1034×1054.39×108Linear Jeffreyʼs II model under dynamic loading

TABLE V 
LINEAR JEFFREYʼS II MODEL PARAMETERS

Fig. 10. Force and displacement versus time on a larger scale under four 
impacts (n=1000).

Fig. 11. Compression behavior of the samples.
Fig. 12. Comparison of the experimental data and the results obtained 
from the linear Jeffreyʼs II model.

Model Loading
 Compression error

value (%)
R2

(compression)

Linear Dynamic 5.68 0.975

TABLE VI
MEAN ABSOLUTE ERROR FOR THE LINEAR JEFFREY’S II 

MODEL UNDER DYNAMIC LOADING
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loading.
The mean absolute error and R2 for compression 

behavior under dynamic loading in the linear model are 
presented in Table VI.

The results show that the rate of average error in the 
linear Jeffrey’s II model under dynamic loading is 5.68% 
for compression behavior.

In order to determine predictive capability of the 
obtained model, the regression coefficient (R2) was 
obtained. As emphasized before, the R2 value is 97.5% for 
compression behavior. Comparison of the result presented 
in Fig. 12 shows good agreement between the experimental 
results and the results obtained from the presented model. 

IV. CONCLUSION
In this study, the linear Jeffrey’s II model was used as a 
mechanical model to predict the compression behavior 
of artificial grass under dynamic loading. The Fourier 
transform was also used to transform the periodic dynamic 
loading to the sum of the harmonic excitations. The loss 
of thickness for specific impact numbers was measured 
for the studied samples. The measurements were made 
for each sample under 50, 100, 200, 300, 500, 700, and 
1000 impacts. Through solving the governing equations 
of the model, the system parameters were estimated by 
using imperialist competitive algorithm. The regression 
coefficient (R2) for the theoretical and experimental 
diagram was obtained to predict the compression behavior 
of artificial grass under dynamic loading. The obtained 
values indicate that Jeffrey’s II model is capable enough to 
predict the compression behavior of artificial grass under 
dynamic loading. 

ABBREVIATIONS
A, B	 Constants of the fabric displacement
c1, c2	 Dashpot constants
CV	 Coefficient of variation
F	 Compressive force
fn, pn	 Parameters of the Fourier series
F̂0	 Amplitude of the excitation force
F01	 Constant force part of the Fourier series
F02	 Coefficient of terms of cosωnt in the Fourier series
F03	 Coefficient of terms of sinωnt in the Fourier series
g	 Gravitational acceleration
h	 Height of the weight-piece
k	 Linear spring constant	
m	 Mass of the weight-piece
n	 Number of impacts
R2	 Regression coefficient
T	 Periodic interval of dynamic force
t0	 Initial time

x	 Textile displacement
y	 Voigt-Kelvin unit displacement	
ẋ, ẏ	 Time derivation of x and y
wn	 nth frequency of the Fourier series
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