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Abstract— In the present study, genetic programming (GP) 

as a completely different approach in comparison with 

conventional methods, based on the imitation of natural 

evolution of living organism is proposed for the prediction of 

cellulose acetate (CA) polymeric membrane characteristics. 

The membrane preparation parameters of polymer 

concentration, additive concentration and coagulation bath 

temperature (CBT) were considered as model input 

parameters. GP model was developed to predict the pure 

water permeate flux of CA membranes based on the 

experimental data of a membrane pilot-scale system. Some 

statistical parameters were considered and calculated to 

investigate the reliability and accuracy of the proposed 

model. The model excellent general performance with 

R
2
=0.98 and the low error values confirmed the accuracy of 

the model. According to the results, GP has displayed the 

potential to be used as a reliable tool for identifying the 

characteristics of CA membranes.  

 

Keywords: cellulose acetate, genetic programming, 

membrane preparation, modeling 

I. INTRODUCTION 

embrane separation processes present a number of 

important advantages such as low energy 

consumption, compact equipment, and less environmental 

impacts and capital investments. Thus, membranes have 

obtained an important place in chemical industries and 

have been used in a wide range of applications. Removal 

or recovery of toxic or valuable components, such as 

organic solvents and acids, from various industrial 

effluents; the production of high-quality water; and 

applications in the pharmaceutical and food industries are 

some examples of membrane technology applications in 

the chemical industries [1-4].  

Among various membrane materials, polymers are the 

most widely used materials for membrane preparation 

owing to their proper mechanical properties, intrinsic 

transport property, flexibility in being formed into different 

shapes, and low cost [5]. Among different polymeric 

materials, cellulose acetate (CA) presents promising 

characteristics such as good toughness, noticeable 

biocompatibility, good desalting, low cost, and high 

potential flux. Thus it has been widely used in various 

membrane separation processes such as gas separation 

(GS), hemodialysis, reverse osmosis (RO), ultrafiltration 
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(UF), and microfiltration (MF). Moreover, hydrophilic 

characteristic of CA membranes reduces fouling during a 

separation process [6-9]. 

There are different ways for the preparation of porous 

polymeric membranes including sintering, stretching, track 

etching, solution casting, and phase inversion [10]. Among 

these methods, phase inversion is the most extensively 

used technique for the preparation of asymmetric 

membranes. In this process, a homogeneous solution, 

which contains polymer, solvent and suitable additives, is 

cast onto a suitable support by using a casting knife, and 

then the support is immersed into a coagulation bath which 

commonly contains distilled water as a non-solvent. 

Subsequently, phase inversion occurs by exchange of 

solvent and non-solvent across the interface between the 

casting solution and the coagulation bath [11].  

For a successful implementation of the membrane 

separation process it is necessary to obtain some 

information about the characteristics of a given membrane. 

On this basis, membrane preparation modeling based on 

fabrication parameters plays an important role in the 

characterization of a polymeric membrane and provides 

useful information about it. Mathematical models are 

usually complicated and do not provide sufficient 

information about the physical phenomena taking place. 

Moreover, such models are typically valid for specific 

conditions [12,13]. 

Artificial neural network (ANN) has shown the ability to 

model highly complex and non-linear systems without 

requiring detailed information about the physical 

parameters of the system. Madaeni et al. [14] and Tan et 

al. [15] successfully implemented ANNs to predict 

membrane characteristics and investigated the effects of 

different preparation parameters. Although ANNs have 

demonstrated to be an effective predictive tool for 

modeling of non-linear systems, its output for a specific 

system usually cannot be extended and used for other 

systems due to the specific ANN model structure and the 

dependence of the model to the initial assumptions of the 

parameters [16].  

Therefore, alternative methods for predicting the 

characteristics of polymeric membranes by using available 

preparation data and extending it to a mathematical model, 

which can be applied simply on unavailable data, are so 

worthwhile. Genetic programming (GP), a branch of soft 

computing, is such a tool that can be widely used in 

various problems [17,18].  

Because of the high degree of complexity and the high 

number of parameters that should be considered in 

prediction of membrane characteristics related to 
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fabrication parameters, it seems that GP is a potential tool 

for reliable and accurate prediction of membrane 

characteristics, including CA membranes. This paper 

utilizes GP as a novel way to develop a mathematical 

model for CA membrane characteristics in terms of pure 

water permeate flux as a function of CA and the additive 

(polyethylene glycol) concentrations and coagulation bath 

temperature (CBT), based on the experimental preparation 

parameters. The goal is to exploit GP flexible tree structure 

to build a prediction model for characterizing CA 

polymeric membranes.  

II. OVERVIEW OF GENETIC PROGRAMMING 

Genetic algorithm (GA) is an optimization technique 

based on the principles of genetics and natural selection 

[19]. This technique allows a population composed of 

many individuals to evolve under specified selection rules 

to minimize the cost function. GP is an extension to 

conventional GA proposed by Koza [20] to solve a given 

problem by automatically generating algorithms and 

expressions on the basis of natural evolution. Unlike GA 

which uses a string of numbers to represent the solution, 

GP automatically creates several computer programs with 

a parse tree structure to solve the problem at hand. These 

programs are coded as a tree structure with its nodes 

(functions) and terminals (leaves) [20]. The chosen 

function set is {+, -, *, /, sin, cos, exp, log, abs}. The 

function set may also include other mathematical 

functions, conditional operators or any user-defined 

operators [21]. The chosen terminal set contains the 

independent variable X or an integer. The GP model is 

explicit and free from conceptual designs, thus it has few 

requirements about the domain knowledge of the problem 

and is therefore less problem-dependent [22,23]. The main 

advantage of GP is that it does not require any priority 

knowledge about the relations among parameters and their 

interactions. Fig. 1 shows a brief flowchart of GP. As 

experimental data, input parameters, introduced to the 

program, the GP starts to random creation of the initial GP 

model populations and evaluates their fitness value 

quantifying how well the created models solve the 

problem. New generations of programs are iteratively 

created by selecting parents based on their fitness and 

breeding them via genetic operators including crossover, 

mutation and reproduction. Genetic operators introduce 

variability in the individuals and make evolution possible, 

which may produce better individuals in posterior 

generations. The crossover operator exchanges sub-trees 

from a pair of individuals, generating two offspring. The 

mutation operator replaces a randomly chosen sub-tree 

from an individual by a new sub-tree randomly generated. 

The reproduction operator simply copies individuals and 

inserts them in the next generation. 

Because of selecting better individuals and passing their 

best characteristics to their offspring, the population tends 

to improve in quality along successive generations. This 

evolutionary process continues until a termination 

criterion, e.g. satisfactory fitness or maximum number of 

generation, is verified. At last, the best-so-far individual is 

designated as the output of the GP operation. 

 
Fig. 1. Schematic flowchart of genetic programming (GP) 

procedure. 

III. EXPERIMENTAL 

A. Materials 

CA with an average molecular weight of 52,000 g mol–1 

was purchased from Fluka for the preparation of CA 

polymeric membrane. 1-Methyl-2-pyrrolidone (NMP) with 

analytical purity of 99.5% (Merck) and distilled water 

were used as solvent and non-solvent agents, respectively. 

Polyethylene glycol (PEG) with an average molecular 

weight of 400 g mol–1 was obtained from Loba Chemie Ltd 

and used as an additive. 

B. Membrane Preparation 

Various CA/PEG/NMP polymeric solutions were 

prepared with different CA concentrations ranging from 

13.5 wt% to 17.5 wt% and PEG concentrations ranging 

from 0 wt% to 10 wt% at a coagulation bath temperature 

(CBT) of 0 and 25 °C. The details of the experimental 

procedure are provided in our previous work [4]. In brief, 

PEG was added to the homogeneous solution of CA in 

NMP, and was mixed by stirring for 12 h at room 

temperature. The prepared homogeneous solutions were 

cast using a film applicator with 180 µm clearance gap on 

a glass plate substrate. It was then moved to the distilled 

water coagulation bath for immersion precipitation. After 

primarily phase separation and membrane formation, the 

membrane was stored in water for 24 h to guarantee the 

complete phase separation. This allowed the water soluble 

components of the membrane to leach out.  

C. Solution Viscosity Measurements 

The viscosity of the prepared casting solution mixtures 

was measured using a Polyvisc digital rheometer (Model 

VISCO Star L) at a constant temperature of 25 oC. 
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D. Scanning Electron Microscopy (SEM) 

The membranes were snapped under liquid nitrogen to 

give a generally consistent and clean break. The 

membranes were then sputter coated with thin film of gold. 

The membranes were mounted on a brass plate using 

double-sided adhesion tape in a lateral position. Cross 

sectional images of the membranes were obtained using 

Cam Scan SEM Model MV2300 microscope. 

E. Experimental Setup 

Permeation flux studies were carried out using a cross-

flow filtration setup as shown schematically in Fig. 2. This 

apparatus consists of a UF disk module, a feed tank, a 

pump, pressure gauges installed on the feed and retentate 

pipes connected to the module, and some valves. 

Additionally, a bypass line was considered for the pump 

exit stream. A flat sheet membrane module made from 

stainless steel was used in all experiments. Effective 

filtration area of the membrane in the module was 24 cm2. 

Permeate water flux (PWF) experiments were done at a 

transmembrane pressure of 0.2 bar and their values were 

calculated using the following equation: 

.

Q
Flux

A t



                                                                      (1) 

where Q is the quantity of permeate (L), A is the effective 

membrane area (m2) and ∆t is the sampling time (h) [4, 

24]. 

 
Fig. 2. Schematic diagram of the experimental set-up. 

The experiments were carried out in batch mode in 

which both permeate and retentate were returned to feed 

reservoir to keep a constant concentration. The feed 

reservoir temperature was maintained at approximately 

30 °C. 

IV. MODELING 

The first population of mathematical models that 

simulated the investigated system in the first generation of 

GP was created randomly. Each model in the initial 

population consists of some nodes and terminals and 

represents a mathematical function. In this study, CA 

concentration, PEG concentration and CBT were 

considered as independent variables and permeate water 

flux of CA membrane was considered as a function of 

them. Furthermore, 20% of the experimental data were 

used as test data for the evaluation of the performance of 

each model. 

The search space of GP is virtually unlimited and 

programs tend to grow in size during the evolutionary 

process. Code growth is a healthy result of genetic 

operators in the search of better solutions, but it also 

permits the appearance of pieces of redundant codes that 

increase the size of the programs without improving their 

fitness; a phenomena known as bloating. Bloating can 

cause stagnation in the evolutionary process [25]. Bloating 

can be defined as an increase in the individual growth 

without improvement in their fitness. In order to prevent 

bloating, maximum depth of individuals was considered 16 

and code growth by crossover and mutation operators was 

acceptable just if the fitness of an individual was 

improved.  

Fitness function evaluates the sum of absolute difference 

between the expected output values and the value returned 

by the individuals. In the GP model development, input 

and output variables should be normalized first to match 

the unit levels of individual factors [23]. 

The evolutionary processes were controlled by 

evolutionary parameters of: population size 250, maximum 

number of generations to be run 50, probability of 

crossover 0.5, probability of mutation 0.4, probability of 

reproduction 0.1, maximum depth for initial random 

individuals 8, maximum depth of mutation fragment 8, and 

maximum permissible depth of individuals after crossover 

16. The initial populations were generated with the 

Ramped Half-and-Half procedure [20]. Moreover, the 

maximum number of generations was considered as 

termination criteria in each run.  

Some statistical parameters were obtained for better 

evaluation of the model. These statistical parameters are 

Normalized Bias (NB), Standard Square Error (SSE), 

Mean Square Error (MSE), Root Mean Square Error 

(RMSE), and R-square (R2) which are described in Eqs. 

(2)–(6). They were used for the fitness investigation and 

error determination of the model. 
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where Yexp,i is the experimental value of permeate water 

flux, Ymodel,i is the value of permeate water flux predicted 

by the model, Ymodel,mean is the average value of the model 

permeate water flux prediction, and n is the number of 

experiments. 

V. RESULTS AND DISCUSSION 

Some experiments were carried out in order to 

investigate the effect of CA concentration, PEG additive 

concentration, and coagulation bath temperature on the 

pure water permeation flux of the resultant CA membrane. 

The experimental results are shown in Fig. 3. As is 

observed, higher coagulation bath temperature causes more 

water permeation flux. This is more obvious in CA 

concentration of 13.5 wt%, where the water permeation 

flux is increased by more than two times via increasing the 

CBT from 0 to 25 °C. However, by increasing the CA 

concentration to 15.5 wt% and 17.5 wt%, this behavior 

becomes less significant. In all CA concentrations and 

CBTs, an increase in PEG concentration results in higher 

water permeation flux. In addition, at different levels of 

PEG concentration and CBT, the PWF (vertical axes in 

Fig. 3) tends to higher values regarding the membranes 

prepared from casting solutions containing less CA 

concentrations. Better presentation of above trend is 

observable in Table I. With respect to Fig. 3, in all CA 

levels, the flux is increased with increase in PEG 

concentration. This effect is more obvious in lower levels 

of CA. 

TABLE I 

EFFECT OF CA CONCENTRATION ON THE PURE WATER FLUX (PWF) OF 

THE PREPARED MEMBRANES 

CA concentration (wt%) CBT (°C) PWF* (L m
–2

 h
–1

) 

13.5 0 72 

 25 137 

15.5 0 32 

 25 61 

17.5 0 3 

 25 17 

*The average PWF of the membranes prepared from different PEG concentrations 
 

Cross-sectional SEM images of the selected membranes 

presented in Fig. 4 confirm the above explanation 

regarding the effect of the polymer and PEG concentration 

as well as coagulation bath temperature on the water 

permeation flux of the prepared membranes. As is 

observed, an increase in CBT and PEG concentration 

along with a decrease in CA concentration result in the 

formation of membranes with higher porosity. It is evident 

that the higher porosity of the prepared membranes reduces 

the resistance against water permeation flux [26]. 

 

 

 

 
Fig. 3. PWF as a function of CBT and PEG concentration at: a) 

CA=13.5 wt% , b) CA=15.5 wt% , and c) CA=17.5 wt%. 

 

The CA and PEG concentrations along with the CBT 

were considered as independent variables to obtain a 

model for permeation flux of water by using GP. In the GP 

model development, input and output variables were 

normalized before running of the program by Eq. (7) in 

order to match the unit levels of individual factors. For 

simplicity, Xmin for all variables was set to zero. Indeed, its 

value hadn’t any effects on final results [23].  

min

max min

X X
X
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



                                     (7) 
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80% of the available experimental data was used for 

developing of GP model and remaining was used for 

validation of the developed model. 
The execution time of running the evolutionary 

algorithm for this case was approximately 18 min on a Dell 

server (Core i3, RAM 2GB, Windows Seven). Fig. 3 

illustrates the prediction of water fluxes using genetic 

programming, and a comparison is done between 

experimental data and results obtained from the GP model. 

As it can be clearly seen, there is very good agreement 

between the model and the experimental results. In other 

words, the model predicts the system behaviors well. 

However, in CA concentration of 17.5 wt%, some 

deviations are observed between the experimental and GP 

model results. This can be attributed to and interpreted by 

the noticeable increase in viscosity. The viscosity of the 

polymeric solutions is presented in Table II. As is 

observed, only a 2 wt% increase in CA concentration from 

15.5 wt% to 17.5 wt% results in a twofold increase in 

viscosity which noticeably affects the membrane formation 

mechanism in the coagulation bath. The noticeable 

increase in the viscosity of the cast film slows the 

diffusional exchange rate of the solvent (NMP) and 

nonsolvent (water) during the solidification process and 

consequently results in formation of a denser structure with 

less PWF [7]. In other words, the reduction of agreement 

between the model and the experimental results in the 

membranes prepared from polymeric solutions containing 

17.5 wt% CA can be attributed to the effect of the solution 

high viscosity which noticeably affects membrane 

morphology and permeability. 

The best-so-far GP model (model-1) that was obtained 

after satisfying termination criterion is: 
 

 

    

  

 

2
2 1 1 3

2
1 2 2 2 3 2

6

1

cos cossin sin 2

log cos cossin sin

cos

Y X X X X

X X X X X X

X

    

              (8) 

 

where, Y, X1, X2, and X3 denote the normalized water 

permeation flux, the normalized CA concentration, the 

normalized coagulation bath temperature, and the 

normalized PEG concentration, respectively. 

 
TABLE II 

 VISCOSITY OF CASTING SOLUTIONS 

solution composition 

viscosity (cP) CA  

  (wt%) 

NMP 

(wt%) 

PEG 

  (wt%) 

15.5 84.5 0 37660 

  5 43366 

  10 51110 

17.5 82.5 0 65049 

  5 81776 

  10 110083 

 

Fig. 5 shows the fitness value, the node numbers, and the 

depth of the best-so-far individual in each generation. With 

respect to this figure, GP provides more accurate 

predictions by increasing the node numbers and depth, 

which result from an increase in the degree of freedom of 

the individuals. 

Fig. 4. Cross sectional SEM images of the selected prepared membranes. 
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Fig. 5. Plots of fitness value, depth and node numbers of the best-

so-far individual vs. generation. 

In order to investigate the reliability of the proposed 

model, some statistical parameters, Eqs. (2) – (6), which 

demonstrate the model performance in prediction of water 

permeation flux of the CA polymeric membranes, are 

presented in Table III.  
 

TABLE III 

 VALUES OF THE STATISTICAL PARAMETERS OF THE GP MODEL 

statistical parameter           value 

R2 0.97807 

SSE 2.62×10–2 

MSE 1.46×10–3 

RMSE 3.82×10–2 

NB% 1.28695 

 
The R-square (coefficient of fitting) value confirms that 

the GP model results are very well fitted to the 

experimental data. The values of standard square error, 

mean square error, and root mean square error in Table III 

indicate some insignificant errors of the model. With 

regard to NB value, the GP model slightly over predicts 

the water permeation flux.  

All data presented in Table III confirm the accuracy of 

the proposed GP model for the prediction of pure water 

permeation flux of the CA membranes. 

VI. CONCLUSIONS 

In this study, the ability of GP approach in estimation of 

CA membrane characteristics in terms of pure water 

permeation flux as a function of CA concentration, PEG 

concentration and CBT was investigated. An important 

benefit of GP modeling is that the model is explicit and 

does not require underlying description of the physical 

process. The proposed GP model is an empirical model 

based on the parameters that influence preparation of the 

CA membranes and consequently affect performance of 

the prepared membranes in a pilot-scale system.  

The experimental data were used for model development 

and validation. The performance of the GP model was 

evaluated by comparing the predictions with the 

experimental results. The proposed model showed a very 

good general performance with strong correlation. GP 

displayed a promising tool for the prediction of CA 

polymeric membrane characteristics. This study is 

evidence for great potential of GP in obtaining models for 

complex and high non-linear approximation problems.   
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