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1 
Abstract—In this research, the compact-core spun yarns 

have been produced using RoCoS roller and the effects of 
filament pre-tension, yarn count and type of sheath fibers 
were investigated on the physical and mechanical properties 
of produced yarns such as strength, elongation percentage, 
hairiness, and abrasion resistance. After statistically analysis 
on the obtained results, for modeling the core-compact yarn 
properties, the regression and artificial neural network 
(ANN) were used to predict the physical and mechanical 
properties. Trial and error method was considered for 
determining the best of ANN topology. For this aim, 1110 
topologies of ANN (with different hidden layers and neurons 
in each hidden layer) were investigated for each property. 
Moreover, to evaluate the accuracy of the created ANN three 
indexes were used, namely mean absolute percentage error 
(MAPE), mean square error (MSE), and correlation 
coefficient (R-value). It was observed that the most accurate 
results were obtained based on MAPE and the best topology 
for predicting all properties is a two-hidden layer ANN 
(maximum MAPE < 0.10) except for the abrasion resistance 
which is a three-hidden layer ANN (MAPE < 0.17).   

Keyword: artificial neural network, compact-core yarn, 
modeling, physical and mechanical properties, RoCoS roller 

I. INTRODUCTION 
In the past decades, core-spun spinning has been 

developed to achieve a better yarn quality and mechanical 
properties as well as higher production per spinning unit. 
The special structure of core-spun yarns, in which a 
filament core is covered by staple fibers, permits to ideally 
combine the advantages of filaments like high strength 
with those of the staple fibers like appearance or 
absorbency properties. Core-spun yarns are used in a wide 
spectrum of various applications such as military, 
industrial, technical textiles and sport clothing. Ring and 
Siro spinning systems are the most conventional systems 
for production of core-spun yarns. Some researchers [1,2] 
employed a novel method using ring spinning frame to 
produce core-spun yarns. Also, a modified ring spinning 
system has been introduced for producing core-spun yarns 
[3]. This system utilizes an air jet for better forming of the 
sheath fiber around the core. Jou and East [4] designed a 
filament charging device, which was based on the principle 
of a two–electrode system to separate a multi filament 
yarn. Embeddable and Locatable spinning (ELS) have 
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been introduced in another work [5], in which locating 
technology is employed to locate filaments and staple 
fibers so that each staple strand could be reinforced by the 
filaments, and the staple fiber could be well embedded into 
the stem of the yarn. Pourahmad and Johari [6] 
investigated the physical and mechanical properties of 
Ring, Solo and Siro core–spun yarns at different 
controllable parameters. Compact spinning is another 
method for producing core-spun yarns. This system has 
two different types which are called Elicore and Elicore 
Twist. Brunk [7] reported that core-spun yarns produced 
by these systems have better evenness and abrasion 
resistant in comparison with Ring core-spun yarns. 

The artificial neural network (ANN) is one of the 
intelligent techniques for data processing which has been 
employed extensively in various textile fields. This 
technique is useful when there are nonlinear relationships 
between parameters. There are many published work, in 
which ANN has been employed to predict the properties of 
different yarns and fabrics and many other characteristics 
of textile materials [8-15]. It seems there is a lack of 
research focused on the predicting properties of core-
compact yarns based on the spinning parameters, therefore 
this paper presents the application of ANN models to 
predict the properties of core-compact yarns based on the 
statistically significant controllable factors such as filament 
pre-tension, yarn count and kind of sheath fibers.  

II. NEURAL NETWORK 
ANN is a structure inspired from the human brain. ANN 

is very useful for modeling nonlinear problems and 
complex functions. ANN consists of three layers including 
input, hidden, and output layers. Neurons in each layer are 
connected by associated weights to other neurons in the 
next layer. The input data is received in input layer and the 
output is obtained in the output layer by a mathematical 
function through hidden layers [16]. In ANN there are 
three operations including training, validation and testing 
sets. Training is used to train the ANN. Validation is useful 
when the network begins to overfit the data, and testing 
group is used to control the error during the training 
process [17]. In this study for predicting mechanical and 
physical properties of compact-core yarns, a feed forward 
multilayer ANN model was used.  

III. MATERIALS AND METHODS 

In this study, 56 different types of yarn samples were 
produced on a compact-core spinning system. A blended 
viscose/polyester and cotton fibers were used as the sheath 
fiber and multi filament nylon yarn with a count of 100 
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denier was used as the core filament. The sheath fiber 
properties are shown in Table I.   

TABLE I 
 THE PROPERTIES OF SHEATH FIBERS 

Elongation 
(%) 

Tenacity 
(gf/tex) 

Percentage of 
fiber blending 

(%) 
Denier Length 

(mm) 
Type of 

sheath fiber 

20 19 45 1.5 38 Viscose 
45 41 55 1.4 34 Polyester 
6 28 100 1.24 27 Cotton 

 
The cotton and viscose/polyester roving count were 0.72 

and 1.09 Ne, respectively. To produce the compact-core 
yarns the RoCoS system was installed on SKF lab spinner 
instead of delivery top roller (Fig. 1), and each roving was 
fed to the drafting system of the compact-core spinning 
frame.  

 

 
Fig. 1. Rotorcraft compact spinning roller (RoCoS). 

    In order to produce different types of compact-core 
yarns, the core filament should be pre-drawn before 
entering the front rollers (RoCoS roller). The filament also 
should be fed to compactor groove of RoCoS roller. For 
this aim, guide rod and pre tensioner were used. Fig. 2. 
shows the process of core-compact yarn production and 
Table II shows the machine settings for producing 
compact-core spun yarns. 

TABLE II 
MACHINE SETTINGS 

 

Fig. 2. Production of core-compact yarns. 

In this study, the tenacity, elongation percentage, 
hairiness and abrasion resistance were considered as the 
physical and mechanical properties of compact-core yarns 

Setting parameters Value  
Twist per meter 900 

Spindel speed (rpm) 22000 
Ring diameter (mm) 36 

 
TABLE III 

LIST OF YARN SAMPLES AND CONTROLLABLE FACTORS 
No. Filament pre-tension Yarn count Type of fiber No. Filament pre-tension Yarn count Type of fiber 
1 25 41.5 Viscose/polyester 29 25 48 Viscose/polyester 
2 50 41.5 Viscose/polyester 30 50 48 Viscose/polyester 
3 75 41.5 Viscose/polyester 31 75 48 Viscose/polyester 
4 100 41.5 Viscose/polyester 32 100 48 Viscose/polyester 
5 125 41.5 Viscose/polyester 33 125 48 Viscose/polyester 
6 160 41.5 Viscose/polyester 34 160 48 Viscose/polyester 
7 180 41.5 Viscose/polyester 35 180 48 Viscose/polyester 
8 25 41.5 Cotton 36 25 48 Cotton 
9 50 41.5 Cotton 37 50 48 Cotton 
10 75 41.5 Cotton 38 75 48 Cotton 
11 100 41.5 Cotton 39 100 48 Cotton 
12 125 41.5 Cotton 40 125 48 Cotton 
13 160 41.5 Cotton 41 160 48 Cotton 
14 180 41.5 Cotton 42 180 48 Cotton 
15 25 43.5 Viscose/polyester 43 25 59 Viscose/polyester 
16 50 43.5 Viscose/polyester 44 50 59 Viscose/polyester 
17 75 43.5 Viscose/polyester 45 75 59 Viscose/polyester 
18 100 43.5 Viscose/polyester 46 100 59 Viscose/polyester 
19 125 43.5 Viscose/polyester 47 125 59 Viscose/polyester 
20 160 43.5 Viscose/polyester 48 160 59 Viscose/polyester 
21 180 43.5 Viscose/polyester 49 180 59 Viscose/polyester 
22 25 43.5 Cotton 50 25 59 Cotton 
23 50 43.5 Cotton 51 50 59 Cotton 
24 75 43.5 Cotton 52 75 59 Cotton 
25 100 43.5 Cotton 53 100 59 Cotton 
26 125 43.5 Cotton 54 125 59 Cotton 
27 160 43.5 Cotton 55 160 59 Cotton 
28 180 43.5 Cotton 56 180 59 Cotton 
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and to determine the effect of controllable factors on these 
properties, 7 levels of filament pre-tension (25, 50, 75, 
100, 125, 160, and 180 g), 4 levels of yarn count (41.5, 
43.5, 48 and 59 tex) and two kind of sheath fibers (cotton 
and polyester/viscose) were chosen. The list of yarn 
samples and considered controllable factors are shown in 
Table III. 

Instron testing machine (Model M10-8201-1) was used 
to measure the tenacity and elongation at breakage of yarns 
with a gauge length of 25 cm. For measuring hairiness  
(number of hairs, longer than or equal to 3 mm), Shirley 
Hairiness Tester (Model SDL096/8) was used. The 
measurement was carried out on 20 m of each yarn sample 
at the speed of 60 m/min. Abrasion resistance was 
determined by Shirley Abrasion Tester (Model Y027). All 
experiments were conducted under the conditions of 22ºC 
and 65 RH%. In order to determine the tenacity and 
elongation, each test was repeated 10 times and for 
abrasion resistance and hairiness the tests were repeated 5 
times, and the average values were considered for each 
measured property. 

TABLE IV 
THE STATISTICAL RESULTS OF MANOVA TEST WITH A %95 

CONFIDENCE INTERVAL 

Characteristic source SSE df MSE F P-
value 

Hairiness 

Yarn count 295.8 3 98.62 7.29 0.00 
Filament pre-

tension 603.39 6 100.57 7.43 0.00 

Type of sheath 
fiber 1874.11 1 1874.11 138.47 0.00 

Error 609.05 45 13.53 - - 
total 3382.42 55 - - - 

Tenacity 

Yarn count 13.24 3 4.41 2.84 0.04 
Filament pre-

tension 67.75 6 11.29 7.27 0.00 

Type of sheath 
fiber 1995.47 1 1995.47 1155.68 0.00 

Error 69.91 45 1.55 - - 
total 1946.37 55 - - - 

Abrasion 
resistance 

Yarn count 73.03 3 24.34 4.64 0.00 
Filament pre-

tension 64.38 6 10.73 2.05 0.04 

Type of sheath 
fiber 234.88 1 234.88 44.78 0.00 

Error 236.05 45 5.24 - - 
total 608.36 55 - - - 

Elongation 

Yarn count 39.46 3 13.15 2.94 0.04 
Filament pre-

tension 113.18 6 18.46 4.21 0.00 

Type of sheath 
fiber 2520.81 1 2520.81 563.01 0.00 

Error 201.48 45 4.48 - - 
total 2874.93 55 - - - 

IV. RESULTS AND DISCUSSION 
To evaluate the effectiveness of considered parameters 

on the yarn properties, multivariate analysis of variance 
(MANOVA) was conducted on the obtained experimental 
data. The results of MANOVA test with a 95% confidence 
interval, for each property are shown in Table IV. This test 
compares the variance explained by factors to the left over 
variance that cannot be explained. If the calculated P-value 

is lower than 5%, it means that the effect of the 
corresponding factor is significant on the investigated 
property. The statistically analysis showed that the 
controllable factors have significant effects on all 
investigated properties. 

Moreover, in this study, a multi compare test with a 95% 
confidence interval on the measured properties was 
conducted to determine whether the collected data are all 
the same, against the general alternative that they are not 
all the same. The obtained results are presented in Table V. 

TABLE V 
THE RESULTS OF MULTI COMPARE TEST WITH A %95 CONFIDENCE 

INTERVAL FOR EACH GROUP 

Group 1 Group 2 
Lower 

boundary for 
the true mean 

Mean of group 
1 minus the 

mean of group 
2 

Upper 
boundary 

for the true 
mean 

Hairiness Tenacity -8.35 -4.38 -0.40 

Hairiness Abrasion 
resistance -1.12 -0.97 -0.82 

Hairiness Elongation -6.70 -4.47 -2.25 

Tenacity Abrasion 
resistance 3.26 7.23 11.21 

Tenacity Elongation -2.32 -1.24 -0.15 
Abrasion 
resistance Elongation -9.55 -5.58 -1.60 

 
If the confidence interval contains 0, the difference 

would not be significant. As can be observed in Table V, 
for none of the pairs of investigated properties the 
confidence interval is 0, therefore the difference is 
significant. As a result, separate models were used to 
predict each property.  

A. Regression Model 
Linear multiple regression analysis was used to establish 

a relationship between the core-compact yarn properties 
and the investigated controllable factors. To this aim, all 
data were divided randomly into two groups; namely reg-
train and test group. Reg-train group (44 data sets) was 
used to determine the regression coefficients and test group 
(12 data sets) was used to evaluate the accuracy of 
obtained regression equation in predicting measured 
properties. In this paper, three indexes were considered for 
measuring accuracy; namely mean absolute percentage 
error (MAPE, Eq. (1)), mean square error (MSE, Eq. (2)) 
and correlation coefficient (R-value). 

1
MAPE 100

1

n y xi i
in x i

−
∑= × ×
=

                      (1) 

1 2MSE (y )
1

n
xi iin

∑= × −
=

                     (2)  

where xi is the actual value and yi is the corresponding 
predicted value. The range of R-value is between -1 to +1 
and in prediction a higher R-value means higher accuracy. 
But for the other indexes such as MAPE and MSE, higher 
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accuracy in modeling obtains when they are 0 or very close 
to 0. Eqs. (3) to (6) and Table VI present the obtained 
results for regression analysis.  

 4.84 0.08 0.01 11.23Tenacity N T F= − + × + × + ×             (3) 

4.67 0.21 0.02 13.34Elongation N T F= − − × + × + ×           (4) 

37.66 0.8 0.07 11.36Hairiness N T F= − × + × − ×               (5)  

 3.65 0.04 0.01 2.14Abrasion resistance N T F= − × + × − ×  (6) 

where N, T and F are the yarn count, the filament pre-
tension and the type of sheath fibers, respectively. Here, 
cotton and viscose/polyester types were considered 1 and 
0, respectively. As can be seen in Table VI, the accuracy of 
regression model evaluated by R-value is high, but MSE 
and MAPE are not close to 0 which means the linear 
regression is not appropriate enough to model the 
measured properties. It should be mentioned that although 
using a higher order regression like quadratic leads to 
better results in prediction as shown in Table VI, this type 
of regression due to existence of numerous terms and 
calculation complexity is not easy to use. Hence, a more 
powerful model such as ANN is required for modeling. 

TABLE VI 
R-VALUE, MSE AND MAPE BETWEEN REGRESSION PREDICTION AND 

CORRESPONDING ACTUAL DATA (TEST GROUP) 
R-value MSE MAPE Property Model  type 

0.97 2.18 1.29 Tenacity 

Linear 
0.66 10.42 1.57 Elongation 

0.86 12.45 2.77 Hairiness 

0.32 3.51 1.34 Abrasion resistance 

0.98 1.08 0.81 Tenacity 

Quadratic 
0.97 2.74 1.36 Elongation 

0.64 2.30 1.19 Hairiness 

0.24 4.93 1.72 Abrasion resistance 

B. ANN Model 
ANN includes various parameters which influence 

directly the prediction accuracy, but the most effective 
ones are the number of hidden layers and the number of 
neurons in each hidden layer. In this study to find the best 
set of ANN parameters for each investigated property, the 
trial and error method was applied. Regarding the literature 
review, the number of hidden layers and neurons in each 
hidden layer were considered between 1 to 3 and 1 to 10, 
respectively. The activation functions for all the hidden 
and output layers were considered Tangent hyperbolic 
shown in Eq. (5), and linear functions, respectively.  

x xe e
Tanh x xe e

−−
= −+

                                                             (5) 

 ANNs were trained with the error back propagation 
algorithm using Trainlm function. To train ANN, the data 

sets in reg-train group were divided randomly into two 
groups; namely ANN-train (34 data sets) and validation 
(10 data sets) groups. As initial weights in ANN were 
selected randomly, each ANN topology was considered 
five times and the best result for that topology was 
considered. To evaluate the accuracy of ANN models, the 
same test group for regression analysis was used and all 
three mentioned indexes were calculated. The best 
topology of ANNs for each investigated property 
corresponding to different indexes are shown in Table VII.  

TABLE VII 
THE BEST TOPOLOGY OF ANN FOR EACH INVESTIGATED PROPERTIES 

BASED ON MAPE, MSE AND R-VALUE 

Considered 
index to 
select the 
best ANN 

Properties  

Hidden layer 
(best 

topology of 
ANN) 

Accuracy indexes between 
ANN output with best topology 

and corresponding actual 
values for testing group 

MAPE MSE R-value 

MAPE 

Tenacity {8 3} 0.0626 0.8500 0.9929 
Elongation {9 9} 0.0600 0.4843 0.9942 
Hairiness {6 6} 0.0997 0.3283 0.8374 
Abrasion 
resistance {2 4 4} 0.1744 1.8600 0.7587 

MSE 

Tenacity {8 4} 0.0629 0.8550 0.9800 
Elongation {7 9} 0.0650 0.4840 0.9950 
Hairiness {4 6} 0.0829 0.6400 0.9800 
Abrasion 
resistance {2 5 5} 0.1754 1.8500 0.7540 

R-value 

Tenacity {8 6} 0.0628 0.8850 0.9939 
Elongation {9 7} 0.0630 0.4950 0.9990 
Hairiness {6 8} 0.0815 0.6927 0.9946 
Abrasion 
resistance {2 5 5} 0.1854 1.9400 0.7589 

 
In Table VII, for example {2 4 4} in the hidden layer 

column means that ANN contains three hidden layers with 
2, 4 and 4 neurons at first, second and third hidden layers, 
respectively, and this ANN can predict the abrasion 
resistance with the highest accuracy according to MAPE 
index. But in using MSE as the accuracy index, the best 
topology for predicting abrasion resistance is {2 5 5}. 
Besides the criteria index to select the best ANN topology, 
the other two indexes were calculated as shown in Table 
VII. 

According to Table VII, the perfect prediction ability of 
ANN model is revealed, but a closer look indicates that 
considering the MAPE index for choosing the best ANN 
topology leads to higher accuracy in prediction. Fig. 3 
illustrates the ANN outputs based on MAPE index to select 
ANN topology along with corresponding actual values for 
different properties.  

Regarding the high accuracy of ANN, the physical and 
mechanical properties of compact-core spun yarns can be 
predicted instead of arduous task of experimental analysis. 
So the yarn parameters can be adjusted to produce 
compact-core yarn with desired physical and mechanical 
properties. 
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V.  CONCLUSION 
Core-spun yarns are used in a wide spectrum of end-

uses such as military textiles and industrial textiles. The 
yarn parameters such as filament pre-tension, yarn count 
and the type of sheath fiber have a significant influence on 
physical and mechanical properties of compact-core spun 
yarns such as tenacity, elongation, hairiness and abrasion 
resistance. Therefore, modeling these parameters can give 
in-depth information about yarn properties. In the first 
step, the significant effect of yarn parameters on the 
measured properties were investigated statistically. 
Regarding the results of multi compare test, to predict yarn 
properties separately, regression and ANN models were 
considered based on the yarn parameters. To achieve the 
best result for modeling, three indexes namely MAPE, 
MSE and R-value were evaluated and finally it was found 
that considering MAPE as a criterion for selecting the best 
ANN topology leads to the highest accuracy in prediction. 
Moreover, the results showed that the best topology for 
predicting tenacity, elongation and hairiness is a two-
hidden layer ANN  (maximum MAPE < 0.10) with {8 3}, 
{9 9} and {6 6} formats, respectively, while for the 
abrasion resistance the best one is {2 4 4} (MAPE < 0.17). 
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